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Wetting of a selective solid surface by an asymmetric binary mixture
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We consider a lattice-gas model of an asymmetric binary mixture in which the attraction between a pair of
molecules of specieA exceeds that between a pair of molecules of spdgiekhe interaction between two
molecules of species and B is chosen to promote the formation of demixAetich liquid bulk phases.
Molecules interact with a selective solid wall, preferentially adsorbing molecules of spggcRssitions of
molecules are restricted to sites on a simple-cubic lattice. We invoke a mean-field representation of the
Hamiltonian governing all intermolecular interactions and assume only nearest-neighbor attractions. Minimiz-
ing the grand-potential functional of the lattice gas numerically, phase diagrams for films wetting the solid
substrate are obtained. One of our key findings cond@+rish mixed or demixed films forming in the vicinity
of the solid surface and coexisting with demix&dich films. The formation oB-rich films can be understood
as a result of the competition between the asymmetry of(liék) mixture and the selectivity of the solid
surface. The concentration of compon&nh B-rich mixed films shows a peculiar temperature dependence. It
first increases with temperatufieuntil an “inversion” temperatureT,,, is reached, and then declines for
=T,,, until the critical point betweelidemixed A- andB-rich films is reached.
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[. INTRODUCTION studies are concerned with a rather simplistic model, namely,
that of asymmetrichinary mixture in which the interactions
If a fluid interacts with a solid substrate a wealth of between like molecules of both components as well as their
surface-induced phase transitions arises that are generalyjzes are set equp23—25. For such a mixture Schmid and
subsumed under the term “wetting1—5]. Wetting phenom-  Wilding focus on the wetting of nonselective substrates, that
ena are of practical importance in a variety of contexts. Theys, a solid surface that does not prefer molecules of either
determine how paints stick to solid surfaces or how detereomponent energeticall)23]. For this system Wildinget al.
gents remove stains from fabfi]. Moreover, wetting is the have determined the bulk phase diagram in an earlier paper
key issue in an important emerging and rapidly developingbased on Monte Carlo and mean-field calculatip®8]. A
field of technology known as “nanofluidics,” where wetting slightly more complex situation was considered by Eaal.
characteristics of nanostructured solid surfaces are utilized ®4] and Kierlik et al. [25] who employed selective solid
manipulate tiny amounts of fluigf —9]. substrates in their work on wetting characteristics of sym-
Investigations of wetting phenomena at a molecular levemetric binary mixtures.
have a long history10]. One of the earliest attempts to clas-  However, with respect to experimental systems solid sub-
sify systems with respect to their wetting behavior is a studystrates should not only be selective for mixture components
by Dash, who analyzed experimental sorption isotherms obut the mixture itself should be asymmetric, that is, the in-
physisorbed gasegll]. It was subsequently realized that teraction between like molecules of one species should differ
wetting phenomena may be perceived as substrate-inducéi®m that between molecules of the other mixture compo-
phase transitions. An example are transitions from partiahent. Even though this situation is the experimentally most
to complete wetting analyzed in the seminal papers by Cahrelevant one, little theoretical attention has been given to it
[12] and Ebner and Saafi3,14. Later Panditet al, who  thus far. An exceptioifand to the best of our knowledge the
built on Dash’s study, presented a more comprehensive imnly one is the work by Choudhury and Ghosh, who con-
vestigation of multilayer adsorption on attractive solid sider an asymmetric binary mixture of Lennard-Jones mol-
substrated15]. Since then more specialized topics in theecules in slit pore$27]. However, these authors are inter-
context of wetting have been considered. Examples includested in confinement effects rather than wetting phenomena
the nature of the prewetting critical poifit6], the order of  occurring at asingle solid surface which are the focal point
wetting transitiong17,18, or the wetting of structured sur- of the present study.
faces[19-22. Since the dimension of the parameter space necessary to
Whereas the wetting of planar substratesuctured or describe an asymmetric binary mixture at a selective solid
not) by pure fluids is quite well understood, less work hassurface is already quite large, we base our work on a lattice
been devoted to binary mixturd®]. Theoretically, most model in which positions of molecules are restricted to sites
of a simple-cubic lattice. We simplify our model even further
by considering only short-randee., nearest-neighbpinter-
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long-range surface interactiofi28]. Within a mean-field ap- confine the mixture by two impenetrable solid substrates lo-

proximation for the intrinsic free-energy functional, we em- cated alt =0 andl=z+1 and introduce the number of mol-

ploy density functional theory to determine the phase behavecules of typeA at those substrateli y/(s), and that of type

ior of this model[29]. B, Ngw(9), respectively[see Eqgs.(2.4) and (2.5 of Ref.
The model has been successfully employed in the past §@9]].

investigate confinement-driven phase transitions in nanopo- In addition, we assume all interactions to be pairwise ad-

rous media where, however, the emphasis was strictly oditive and model them according to square-well potentials

symmetricbinary mixtures and the pore walls are nonselecawhere the width of the attractive well is set equal to the

tive [29]. The bulk behavior of such a symmetric binary diametero of a fluid molecule(taking the same value af

lattice gas is qualitatively similar to the one observed earliefor both species Hence, we restrict ourselves exclusively to

by Wilding et al. for their related but continuous symmetric nearest-neighbor attractions. The assumption of a maximum

model mixture[26]. Wetting of an isolated solid surface has occupation of each site by at most one moledigee Eq.

also been studied for this mode0]. (2.1)] accounts for the infinitely hard core imposed by the
In the present paper we extend the model of Woywod andquare-well potential.

Schoen[29,3( to the case of asymmetric binary mixtures  The energy functioti.e., the Hamiltoniangoverning our

wetting a selective, planar, and a chemically homogeneousystem can then be cast as

substrate surface. Our paper is organized as follows. In Sec.

Il we outline the theoretical foundations of our study where H(S)=€e[Naa(S) + xsNgg(S) ]+ €aAsNag(S)

we introduce the model in Sec. Il A and develop its mean-

field theoretical treatment in Sec. Il B. Section Ill is given to + ewlNaw(S) + xwNew($) ]~ L[Na(S) + Na()],

a consideration of thermodynamic equilibrium states. We be- (2.2

gin in Sec. Il A with a brief discussion of the limit of van-

ishing temperature in which we can solve our model analytiwhere

cally. The more general case of nonvanishing temperatures is

considered in Sec. Il B, where symmetry considerations are €=€Ans (2.33
employed in Sec. Ill C to reduce the numerical burden. The
determination of phase diagrams is outlined in Sec. Il D. Ew= €Aw> (2.3
Section IV is devoted to a presentation of our results starting
with the bulk in Sec. IV A and continuing with wetting phe- Ye= €BB (2.39
nomena in Sec. IV B. Finally, we summarize our findings in B ean’ '
Sec. V.
€
XwW= == (2.30
Il. THEORY €aw
A. Model system In Egs. (2.3), € determines the depth of the attractive well

We consider a binaryA-B) mixture on a simple cubic (i:e., t.he attraction'streng)tkof the A—A potential function.
lattice of N'=nz sites, whose lattice constantfis The posi-  L1Kewise, ey describes the attraction of a molecule of spe-
tion of a fluid molecule on this lattice is specified by a pair of C€SA by the solid substrate.
integers k,1) where I=k=n labels the position in an-y Parametej g will hen_ceforth be referred to as the _“asym—
plane and El<z determines the position of that plane Metry” of the model mixture whergg>1 characterizes a
along thez axis. A specific site may be occupied either by aPinary mixture in which the formation d8-B pairs is ener-
molecule of specie or B, or it may be altogether empty. To 9etically favored whereas fors<1 this is the case foA-A

describe individual configurations on the lattice we introducg?@irs. For the special casgs=1 the asymmetric mixture
a matrixs of occupation numbers such that degenerates to the symmetric case previously studied in

Refs.[29,30. In addition, we define the “selectivity” of the
+1, site occupied by molecule of componeft solid surfaces by specifying,, in Eq. (2.30 in a fashion
similar to yg in Eq. (2.39. Hence, the parameter space of our
model is spanned by the sgt,eag,ew,xe,xwt- TO limit
—1, site occupied by molecule of componeBt the complexity of our model we deliberately choose

(2.1

Sk1= 0, empty site

M= A= Up 2.9
For a given configuratioathe total number of sites occupied _ .
by molecules of species or B is given byNa(s) or Ng(s),  in all the calculations of this worksee Eq(2.2)]. o
respectively, for which explicit expressions are given in Eqs. Based upon these considerations we may readily intro-
(2.23 and(2.2b in the paper by Woywod and Schof29]. duce the partition function in the grand canonical ensemble
Based upon these expressions Woywod and Schoen also c¥l2 [31]
culated the total number oA-A[Naa(S)], B-B[Ngg(9)],
and A-B nearest-neighbor paiffNag(s)] on the lattice[see SINT.w =" exd—BH(s) 1=exy — BQ 2
Egs. (2.68, (2.6b), and (2.60 in Ref. [29]]. We formally (NTop) % H=AH(S)] N-B), 29
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Il

B. Mean-field treatment (2.10

To proceed we introduce a mean-field approximation forrepresents the priori possible configurations corresponding
the Hamiltonian specified in E¢2.2). It consists ofassum-  to the same value df(,¢, that is, the degeneracy of a par-
ing that within each plankparallel to the solid substrates the ticular microstate characterized by vectofsandn®.
occupation number at each lattice site can be replaced by an In the thermodynamic limiti.e., asn—) it is conve-
averageoccupation number for the entire plane. On accounnient to replace the discrete vanable$ by their (quasiy
of the symmetry-breaking nature of the solid substrate theseontinuous counterpartﬁI n I/n so that the double sums
average occupation numbers will generally vary betweercan be replaced by double integrals, that is,
planes, that is they will change with Hence, we introduce
the totallocal density, n

n A B 2
A

N . 1-pp B
wAnf BE nfdp,f dp|

1
— A B:_ 2 = = _ nl =0 ”I
=Pt =g k§=:1 Skl = o (2.6)

whereQ (N, T,u) is the grand potential and/ is the “vol-

n
ume” (i.e., the number of sitdn the lattice. O (n*,nB)= H

n| +I’]|

n

where thez-dimensional vectorp” andp® are defined analo-
and thelocal “miscibility” m, gously to n* and nB, respectively. Changing variables
ot pE—p; .M, via Eqs.(2.6) and(2.7) in this last expression

! n permits us to eventually cast E@®.9) as
Mp=pr=—pr=y > Sl 2.7
k=1
. . . Emi=n f f " dof | ©(p"p®)

as convenient alternative order parameters at the mean-field " =1 Jo ' Jo !
level. In the thermodynamic limit— o, p, (in units of £°) A B
is dimensionless and continuous on the intef\@l] which X exH — BHmi(p"p" )]
implies thatm, is continuous and dimensionless as well but N2z
on the interval —1,1]. = _f p dpJ dmo (p,m)

Mathematically speaking, the mean-field assumption con- 27
sists of mapping thaxz occupation number matrig onto .
the zdimensional vectorsn®=(nf,n%, ... n2) and n® XX~ BHmi(p, ;)]
=(n%,n%, ... n%) wheren| is the total number of mol- nzz
ecules of specieson lattice pland regardlessof their spe- — | p dp| dmexp
cific arrangement. Hence, we replddés) by its mean-field 2
analogH {(n*,nB), where we note in passing that the trans- X[~ Beo(p,m.T, )] 2.1
formations— n”,nB is not bijective in generalalso see Sec. ’ '
nA).

wherew(p,m; T,u) defines an energy hyperplane in the mul-
tidimensional space spanned by the set of local order param-
eters{p,m} for given values ofl and x.

To derive the mean-field analog of E@.5) we rewrite it
more explicitly as

1 1 1 The functionw(p,m;T,u) may have many extrema in
= _ p—m space. The necessary conditions for these extrema to
- 5112_1 5212_1 s, 22:_1 X~ BH(9)] exist may be stated as
z 1 1 1
dw(p,m;T,p)
= ce exd — BH(9)]. — T —n =
(H 51,;*1 52';71 szfl ) n: B ( )] apk hl(pk—l!mk—l!pk vmk!pk+lvmk+l) 01
2.8 (2.12a
P do(p,m;T,u)
Hence_, at the mean-field level, we may replace ez —:hg(Pk—limk—l’Pk1mk’Pk+1rmk+1):Ov
sums in parentheses above according to Imy
(2.12b
z n n*n]A o . . K
E-E. =1 > O(n?,nB) vv.here' explicit expressions for the functioh§ and h¥ are
=1 A0 nBoo given in Eqs.(B5). Equationg2.12 may have several solu-
tionsae=1,... . Itis then sensible to introduce the notion
xexd — BHmi(n*,nB)], (2.9  of a phaseP“ through the set of 2 elements
where the combinatorial factor Pe={p*,m*} (2.13
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wherep® andm® are not only simultaneous solutions of Egs. is a consequence of the fact that B0 the mean-field
(2.12 but alsominimaof w(p,m;T,u). At this point it is  treatment becomes exadi.e., the transformations,
important to realize that in the thermodynamic lirfiie., as  —p,,m, becomes bijectivewhere the subscript “0” was

n—oo) the global minimump*, m* of the functionw will introduced to emphasize the liniit=0. Equation(3.2) is
completely determine the integral in EQ.11. In the limit  important becausét,;(P“) can be calculated analytically
n—oo, this permits us to rewrite Eq2.11) as for our present moddl32].

(T, )= Am[f B. Nonvanishing temperatures

For T>0 we are concerned with solutions of E¢®.12).
INE (N,T,0) To find these it is convenient to introduce tfteanspose of
= the) 2z-dimensional vector

BN
T
_ In®(p*,m*)  Hydp*,m*) (2.14 XE=(paaMy, Pt My M) 34
BN N ' which permits us to rewrite Eq¢2.12) as
wherep* andm* represent the “configuration” at the abso- hi(po,Mg,p1,My1,p2,My)

lute minimum of the grand—potential densityT,w), that is
the thermodynamically stable phag® whereas all other
—1 phases are only metastaljkxcept for points of phase
coexistence, see Sec. lI)D

h%(po,mo,pl,ml,p21m2)

hl1(P|—1,m|—1:P| NP, M) |
f(x)= =0.

hy(pr—1,M 1,01, M ,pi41,M
IIl. EQUILIBRIUM STATES 2(P1-1Mi—1,P1 M P41, M)

A. Limit of vanishing temperature

hi(p,—1,M,—1,p,,M;, ,m
Let us now briefly discuss the special case in which the 1P2-1: Mz 1,P2: Mz Pz1 Mt 1)

transformations, | — p; ,m, is bijective. From the definition h3(Pz-1.Mz 1,2, Mz 741, M1 1)

of p, andm, in Egs.(2.6) and (2.7) it is immediately clear (3.5
that this can only be the case if all matrix elements inrttile
row of s are equal assuming one of the three values given i
Eq. (2.1). This then implies thafp;=0,1 is discrete and
double—valued. In other words, across any given lattic
planel all sites must be empty, or occupied by molecules of
one or the other species so that=p/*=1 or p;=pf=1,
respectively. To discriminate between these cases(ZEq.
givesm=1 if p=p'=1 whereasm=—1 if p;=pP=1.
Thus, where 6T and Su are sufficiently small so that we may ex-
(3.19 pand Eq.(3.5 in a Taylor series arounxl,

r$uppose a solutioxy of Eq. (3.5 exists for a given tempera-
ture Ty and a chemical potential,. We are then seeking a
esolutionx for slightly different thermodynamic conditions

T=Ty+ 5T, (3.6a

w=pot ou, (3.6b

n=n,
0 f(X) =F(x0) + VT(X) =y, (X—X0) + O(|X—Xo|*) =0,
=i (3.1 3.7
| s
retaining only the linear term where tzalimensional vector
implying ®=1 from Eq. (2.10, which is mathematically V'=(8/dp1,d/dmy, ....0ldp,,aldm,). , Introducing  the
equivalent to saying that the transformatispy—p,,m; is  functional matrixD through the dyadvf'(x), that is
bijective. N 1 ,
If this is so we conclude from Eq2.11) that 07_hl (7_hz (9_hz
dp1  Ip1 p1
Hui(P 1 1
w“(PC’;T,m=%. (3.2 oy dhy o dhy
om;  om, om,
This latter expression is identical to E(.14) in the limit D=Vii(x)=| : N R
T=0 replacing, however, in Ed3.2, P* by P*. Thus, in ohi  oh} oh3
this sense - -
dpz 9P, dpz
Ho (P ohi oh3 oh}
wol )= wo(P"ip) ="} @3 om, om,  om,
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we can solve Eq(3.7) iteratively by rewriting it as where elements of the submatrices are related through

%11 D00 +x= %X 39 Ap 1o 141= Ak (3.153

where Eq(3.5) has also been used and the elemenf3 oan

easily be computed with the aid of EqR5). Boriio 11=Br, kl=1 7. (3.15h
)—+1'—+]__ Nl LR N .

C. Symmetry considerations It is then easy to verify that
Since we restrict ourselves to nearest-neighbor interac-

tions, h'{,z depend only on the set of variablgs; ,m;|k—1 0 . 0

<j=<k+1} as one can verify from Eq¢B5). Hence,D in

Eq. (3.8 has a band structure where all elements

ah2®+l ah(f+l

. B 0 ... 0|, (316
ahy, 7 7 .
d -=0, (3.109 il)j—l ld)f:—l
Pi dh; ohi
0 ... 0
) am(p 0m¢
ahi o
o =0, Vl]i—j|=2. (810D that s, it contains only four nonzero elements. Similarly, the

last two rows of submatri can be cast as
Moreover, sincew(P) is continuous and differentiable we

have
b1 b1 P P
oh  Pe Pw  ohl 0 o it dh; ghe  ohd
oy omape apam,ap TRl 31D A= o e e P
o o _ o ohd~t oh?"t sng  ohP
that is D is symmetric with respect to its main diagonal. o ... 0 o S ame am
Since in this work we focus on planar, chemically homoge- @ @ P @
neous substrates an additional symmetry exists for the local (3.17

order parameters with respect tqwrtual) midplane on the
lattice which may coincide with an actual lattice plane i§
odd. Therefore, iz is odd we conclude that

One then realizes that i the element

dhy  FPw Pw a1
Po—k=Pd+k (3.123 Ipe  IpedMe JIMedpe (318
My =Mp.k, k=1,...P—1, (3.12b appears, whereas i the conjugate element
hered=(z+1)/2. If he other h i
where (z+1)/2. If, on the other hand; is even, &hg,ﬂ 2o 2o o1
Ipe  IPedMpr1  IMgy1d '
Pb—ki1= Pk (3.133 P PodMe+1 ©+19P®

arises. Similar considerations apply to the pair of elements
Mo_ke1=Mopsk, k=1,...D, (3.130  oh{/apge and dh} Y op,, as well as to the corresponding

two pairs of elements on the last rowsAdfandB. Moreover,

where now, of coursep =z/2. o - .
Lo . . . it is apparent from symmetry properties stated in EgsL
To simplify the subsequent discussion we restrict our- pp y y prop HRsl3y

P P+1 :
selves to the case of evenvhere we note in passing that for (ﬁ ever) thalt bmhah}% /gpq’ and oh; . /ép‘b ;re actlrr:ghon
sufficiently largez the distinction between odd and event e same element of the vector-x, in Eq. (3.7) such that
numbers of lattice planes becomes, of course, irrelevanf‘q' (314 can be recast as

Then we may reorganize the 2lements of vectors, f, and

V such that the resulting matri@ has point symmetry with A’ 0O
respect to an inversion center. More specifically, we may D'= , (3.20
expressD formally as 0 A

where0 is thezx z zero matrix,A’ is identical withA ex-
(3.14 cept for the last two elements in the two bottom rows, that is
’ [see Eq(3.17)],
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d-1

ohg~t (oh?  on? ohd  oh?
- o ... O —+ +
A= P P Ipe  IPpa+1 Mg dMg1q) |, (3.21
o o ohP~1 snd-t ﬁ+ ohy ) ohy ) oh? )
Mgy Mg \dpy  Ipap+1 IMg Mg 4
|
and the relation between the new submatriéésand A’ is do & (do dp, dw dm)| do Jo
the same as that betwednandA [see Eq(3.153]. d_:;l ap @+a_n1| du * o ou
Because of these symmetry considerations we may re-
place Eq.(3.9 by 12 _
:_Ezp':_p’ (3.27

(3.22 =1

where Eqgs(2.12 and(B4) have also been employed aﬁd
is the mean density on thentire lattice. Assuming Eq(3.25
to hold for u;,; we can solve Eq(3.26) for u;, ¢ to obtain

Xis1=— AT (x) +X= 0%+ X
where the(transpose of thez-dimensional vectors

;T:(plamli PO |m(l)); (323a

fTX)=(hl,hl, ... h? h?) (3.23h oP(pi) = 0(w)

== (3.29
PiB_Pi

Miv1=pi+

and thezx z matrix A’ replace the 2x 2z matrix D which

considerably reduces the numerical efforts necessary in solthus providing an iterative scheme to calculate the chemical

ing the original Eq.(3.7) iteratively. potential at coexistence. It may be initiated by setting ini-
In practice, starting from a suitable solutigfifor a given  tially u;=ug” at the previous temperatuiig and calculat-

phaseP® we solve Eq.(3.22 iteratively until |f(X;,,)| ing p®” from x*# at that temperature.

<10 ** which requires typically 15-10" iterations. Under However,x*# will no longer be solutions of Eq3.24 at

this condition,x;, 1 is &n approximate, numericakolution T’ and ;.. Hence, we solve Eq$3.24 and(3.28 until

of the equation | Su|=u® — u$<10"1L Hence, for a given temperature

P« and P# coexist at a chemical potentiat®?=p;, ;.

However, the associate@®” does not necessarily corre-

spond to theabsolutebut may represent only r@lative mini-

mum of the grand-potential density. If, on the other hand, for

any paire, B, the grand potential density assumegitsbal

minimum, P and P# arethermodynamicallytable phases

at coexistence. The range of temperatures and chemical po-

tentials over which this condition is satisfied defines the co-

f(x)=0. (3.29

D. Phase equilibria

In general, we are not only interested in solutions of Eq.
(3.24) but, more specifically, in those solutions satisfying

0 B (uB )= 0 (P u,T) = f (PP, T).

(3.2 existence Iinmfj'g(T) betweenP® und P# as the set
Equation(3.25 defines the chemical potential at coexistence  u2#(T)={u, T|w*¥(u*, T)=minw (P, u*?,T)}.
w between phaseB® and P for a given temperaturg. y

(3.29

Moreover, the subsequent discussion will benefit from intro-
ducing the notion of a phase diagram as the union of all

To determineu®”? at a slightly different temperaturg’ =T
+ 6T we expandw in a Taylor series around some chemical
potentialu; , say, that is

dew® B coexistence lines, that is,
0P )= 0P(u)+ d (pi— Miv1) p
K M= ux(T)=U M)C(Y (T). (3.30
a,p
+O((@i— pi+1)?)
:wa,ﬂ(ui) _;ia,ﬂ(ﬂi _lui+l)v T’ =const IV. RESULTS
(3.26 A. Fluid phase properties

where we dropped all other arguments to ease the notational
burden. The far right side of E¢3.26 follows from the fact
that
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In this work we are exclusively concerned with wetting of
a single solid substrate by a fluid mixture. However, for
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1.0 , , . , , , TABLE |. Notation to identify phase® * of asymmetric binary
mixtures wetting a selective, chemically homogeneous, planar solid
0.8 1 substrate.
0.6 1 a Nature of phase
A
(o8
04 t G .gas.
bF B-rich film
02 | | mF mixed film
-] aF A-rich film
oo L L . . . . mL mixed liquid
1 2 3 4 5 6 aL A-rich liquid
k

FIG. 1. Local densityp, as function of lattice plan& at a  deviation of the local density from its bulk value remains
critical point T,=0.810, u.~—2.464 at which demixed\- and  always short-range even at critical points as the plot in Fig. 1
B-rich phases become indistinguishable. The solid substrate is Ia-eveals. This reflects the mean-field approximation for the
cated atkk=0. Discontuniuties reflect discrete nature of lattice-gasHamiltonian. Hence, we conclude that for the present choice
model. The dashed horizontal line represents bulk density undesf z=12 the distance between the solid substrates is suffi-
identical thermodynamic conditions. ciently large so that confinement effects do not interfere with

wetting phenomena. In other words, we aféctivelydeal-
purely practical reasorjge., in order to minimize the dimen- ing with phenomena occurring atsingle solid surface.
sion of the vector functiorf(x) in Eq. (3.5] appropriate
boundary conditions have already been introduced. Through
the presence of two planar substrates at lattice pldnes The key issue of this work is the combined effects of
=0,z+1 our system is symmetric with respect to a planeasymmetry of the mixturé.e., yg# 1) and selectivity of the
located halfway in between lattice planes ® and|=® solid substratdi.e., yw# 1). To illustrate first the impact of
+1 (z even thus permitting us to change variables accord-asymmetry we consider as reference the symmetric bulk
ing to x—X. mixture characterized byg=1. In addition we Set,g=

However, for smallz the presence of a second substrate— 0.5 andey,= — 1.0 such that the mixture tends to decom-
will generally cause unwanted confinement effects such apose on account of the relatively weak attraction between
capillary condensation replacing wetting transitions whichmolecules of unlike species relative to the attraction between
are the key issue here. To make sure that for the presetike molecules. In Fig. @) we present the phase diagram
choice ofz=12 and moderate fluid-wall attractiore(= ux(T) for this special case. It consists of a line of discon-
—1.075) wetting prevails, in Fig. 1 we present the local dentinuous phase transitionsc®(T) along which a stable gas
sity py of an adsorbed film in thermodynamic equilibrium phase(G) coexists with a demixed-rich liquid phase(al)
with a bulk gas mixture. The plot in Fig. 1 clearly indicates up to a temperaturel,=1.082 (see Table ). The term
that the local density of the adsorbed film quickly approaches a-rich” therefore refers to the fact that an excess of the
the density of the homogeneous bulk phase as one depagemponent is present. However, we note in passing that for
from the (lower) surface of the solid substrate. The range ofthe symmetric mixturéd- andB-rich demixed phases cannot
distances from the solid substrate over whighdeviates be distinguished in principle. Thus, as far as symmetric mix-
from its constant bulk value is more or less the same regardures are concerned the term-fich” refers only to the fact
less of the specific conditions under consideration as we hauhat an excess of one of the two components is present in the
tested for several points along various coexistence lines. Theéemixed liquid state regardless of which one it is.

2. Asymmetry of the bulk mixture

-1.6 T T — -1.6
@ (b)
2.0 al
3 = mL
24t
G
-2.8 : : : -2.8 - : -
0.6 0.8 1.0 1.2 14 0.6 0.8 1.0 1.2 1.4
T T

FIG. 2. Phase diagrams,(T) for bulk mixtures.(@) Symmetric mixture gg=1) where the dotted line represents théne starting at
a tricritical point(x), and(@®) represents a critical pointb) Asymmetric mixture §z=0.99) with two critical point{®). One-phase regions
are labeled according to Table I.
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TABLE Il. Color key to identify coexistence Iinqez;“B(T) along B. Wetting behavior
which P and P# are in thermodynamic equilibrium. The table

applies only to the online version of this paper. Henceforth, we fix exs=—1.0, €4=—0.5, and xg

=0.99, and investigate the impact gf, on the wetting be-

ap color key havior of this weakly asymmetric binary mixture. This seems
G-alf - sensible to limit the dimension of the parameter space and
sk because varyingg does not alter the generic phase behavior
Gl of our model qualitatively. To realize a wall the mixture “de-
aff-bF - sires” to wet preferentially we set,,y=—1.075 so that mol-
ml-bF ' ecules of componen gain potential energy by interacting
GbF — with the solid substrate rather than with another molecule of

either specie#\ or B.

Before turning to a discussion of our results the reader
: ' _ C should, however, realize that a representation of phase dia-
coexistence lines, namely; " (T) ending at a tricritical grams in terms of the mean density of the fjifis inappro-

point 4=—2.040 andT;=1.166. At the tricritical point  yjate since this quantity depends on the choice foir wet-
the line of discontinuous phase transitions between mixe(ang films of finite thickness. Likewise a quantitative

and demixedh-rich liquid phases changes to\dine, thatis,  giscussion of the “degree” of miscibility of a particular
a line of continuous phase transitions between the two phase in terms oﬁ=zflzﬁ m, is equally unsuitable be-
: : mL - =1
!{ohas.es.t Thet coe?f[l'stelnce. It”’f (T),toc? the o;hzegohang, cause it does not take into account the local density of the
erminates at a critical point demarcated by= 2. an wetting film such that absolute values of can be quite

Te=1.125. Hence, the bifurcation gi(T) at p=—2.250 misleading. Instead we introduce the excess coverage
and T,=1.082 constitutes a triple point at which a gaseous, g 9

mixed liquid and demixedA-rich liquid phase coexist. @ @

A slight asymmetry in the like interactions changes this FEE (Pk— Poul) = 2 (Pk—Pa), 4.7
picture significantly in a number of respects. This can be k=1 k=1
seen in Fig. &) where we consider the cagg=0.99. First,
the triple point is shifted to somewhat higher valyeg=
—2.243 andT=1.092. Second, and more importantly, the

aLmL

At the temperaturd;=1.082, u,(T) bifurcates into two

aLmL

where the far right side follows because for our present
. . . : choice of parameters limn, ¢ o= ppuik Whereppui is the den-
coexlstsnlclz(e “.n%( (T) 1S shorter (zjompdared with the gyml- sity of the bulk phase for a givep andT. The excess cov-
metric bulk mixture{see Fig. 2a)] and ends at a true critical g 5q6 js 5 particularly convenient order parameter because it
point uc=—2.182, T,=1.122 replacing the tricritical point s frequently measured in parallel experimental stufigs.

visible in Fig. 2a). Hence, the\ line starting atuwi= | a similar spirit we introduce a density-corrected miscibil-
—2.040 andT;=1.166 in Fig. 2a) is absent in Fig. @). ity parameter through the expression
085 : ‘
@ 0% )
0.80 1 080 | bF
o \
' \
BOOTS T " = 075t G mF/ ]
0.70 | 1 0.70 +
0.65 . - : 0.65 - : : FIG. 3. (Color online Phase
nge 02 0-50 075 1.00 0.00 025 0.50 0:15 1.00 diagrams in theT-T" representa-
r r tion. (@) yw=1.0000, (b) xw
085 | ‘ | 085 | | , =1.0160, (¢) xw=1.0175, and
© @ (d) xw=1.0250. See Table Il for
0.80 | 1 0.80 f color key.
bE nF
o @ 5
0Tt 4 e oy o
070 | ] 070 |
065 : : - 0.65 - . .
000 025 050 075 100 000 025 050 075 100
r r
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0.85 ; :
@ 0% )
0.80 | 1 0.80 |
e /'/&\\\
= 075} 7N 1 = o075t £ N
G mF G
aF aF
0.70 | : 0.70 | .
0.65 ‘ : 0.65 : : FIG. 4. (Color onling. Phase
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 diagrams in theT-A representa-
& & tion. (@ xw=1.000, (b) xw
g% 085 =1.0145, (c) xw=1.0157, and
© (d) xw=1.0160. See Table Il for
color key.
0.80 | ] 0.80 |
/,v‘ "\\\\ %’\
= 075 m>\ \ { = o075t \‘1 W
aF mF
0.70 | ] 0.70 |
0.65 : : 0.65 : -
-1.0 -0.5 0.0 05 1.0 -1.0 0.5 0.0 0.5 1.0
A A
1 2 tendency towards formation oA-rich films despite their
AEF E MkPk (4.2 larger degree of miscibilityi.e., the smaller value of\)
k=1

compared with the latter.
If the substrate is selective this picture becomes consider-
ably richer. This is apparent from the plot in FighBwhere

as a meaningful quantitative measure of the “degree” of mis- . .
cibility in bingary-g"nixture films g we plotT as a function ofl” for y=1.0160. For this value

Since the excess coverafjes perhaps the more familiar ©f Xw molecules of specieB are preferentially adsorbed by
of the two order parameters we begin by discussing its dethe substrate such that the fluid—substrate interaction coun-
pendence oy, (see Fig. 3 In Fig. 3@ we plotT as a terbalances to some extent the asymmetry of the mixture. As

function of ' for an asymmetric binary mixture wetting a & consequence the plot in Fig(b3 is morphologically dis-
nonselective wall ¢g=1.000) which we take as a reference tinct from the one displayed in Fig(& in that now a ther-
system. The plot shows that for sufficiently low temperaturegnodynamically stable, demixe8-rich film coexists with
T=0.740 a gaseous mixture at low excess coveragd 0 both a mixedB-rich film and a demixed-rich film. As x
=0.340 coexists with aA-rich film at high excess coverage increases further the one-phase region of tbdemixed
0.846<sI'<=1.0. As T increases further eventually a triple B-rich film widens and tends to gradually replace {loe-
point exists atT;=0.740 at which a gaseous film coexists mixed A-rich film as a comparison between FiggbBand
simultaneously with a mixed one at intermediate excess cov3(c) indicates. This causes the critical point of the and
erages and with aA-rich one at high excess coverages. ForB-rich demixed films to be locateabovethe coexistence line
even higher temperatures the gaseous film coexists with ,axGa'-(T) in the bulk so that thé\-rich wetting film becomes
mixed film whereas mixed films coexist separately with de-metastable over a regime indicated by the gray line in Fig.
mixed films until the respective critical temperatures at3(c). Eventually, aty,,=1.025, theB-rich demixed phase
TS =0.763 andT""¥=0.761 are reached. completely replaces the demixédrich one favored by the
The nature of the phases cannot be determined solely casymmetry of the binary mixturgg=0.99 in the bulk. Thus,
the basis of the plot in Fig.(8). However, the parallel plotin for a sufficiently large selectivity the substrate is capable of
Fig. 4@ permits one to identify the specific wetting films inducing a decomposition of the adsorbed film that is not
without ambiguity. It reveals that the gaseous film is characfavored by the asymmetry of the mixture, that iBaich
terized byA~0 regardless of as one would expect. In other phase is not visible in the bulk phase diagram shown in Fig.
words, the gaseous film is nearly perfectly mixed unlike the2(b), as one would expect intuitively for our present choice
coexisting A-rich film for which 0.558<A=<1.0 depending of values foryg, €xa, @andeag.
onT. That is, the asymmetry of th@ulk) mixture favoring The mechanism through which th&rich demixed film
the formation ofA-rich mixtures prevails even in the imme- appears ag,y increases is revealed in greater detail through
diate vicinity of the solid substrate. Figuréa#t also shows plots of T versusA in Figs. 4 which show that the critical
that the mixed films coexisting with either gasArich de-  point at which mixed and demixeé-rich films become in-
mixed films is characterized b%=0, so that it too has a distinguishable increases in temperature but shifts to lawer
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2.4 : : : 24 . .
alL aF V
2571 1 2.5 1
2 /" nF bF 1 260
aF . = L/ A _bF
2.6 " mF 1 26+ 074 076 /" mF |
G i /G . FIG. 5. (Color onlin@ Phase
a . .
2.7 : : : 27 . . . ® diagrams in theu-T representa-
0.65 020 dii 0.50 s 0.65 0.70 0.75 0.80 0.85 tion and foryy, as in Fig. 3. Inset
T T in (b) is an enhancement to em-
24 o4 : ‘ phasize u"™H(T) (see the tejt
The solid black line represents the
aL coexistence curve.o?(T) in the
25 ¢ 25 ¢ ] bulk. See Table Il for color key.
= =
bF
26t 26t /nF
/G .
2.7 : ; ; 2.7 : : :
0.65 0.70 0.75 0.80 0.85 0.65 0.70 0.75 0.80 0.85
T T

[see Figs. @), 4(b), and 4c)]. This indicates that with in- that a triple point between a mixed film and demixedand
creasingyy, the mixed film contains a larger mole fraction of B-rich films occurs T;=0.739 andu;=—2.600). Further
componenB. For sufficiently largey,, componenB begins increase ofy,, causes this new triple point to shift in the
to dominate the composition of the mixed film over a certaindirection of the already existing one at which a gaseous,
range of temperaturdsee Fig. 4c)]. With increasingT this  mixed and demixed?-rich film coexist[see Figs. &) and
effect becomes more pronounced at first over a range 0.728b)]. Eventually, the two triple points coincide thereby giv-
<T=T,, Where the “inversion” temperature is defined as ing rise to a quadruple point at which all four phases.,
gaseous, mixed, and demixed; and B-rich films) are in

dA coexistence. Increasing,, even further beyond this point
aT =0. (4.3 causes the one-phase region of the demigedch film to
T=Tiny widen as the plot in Fig. () illustrates. Since the one-phase

region of theA-rich demixed film is then completely sur-

For T>T,,, the composition of the mixed film changes to- rounded by other coexistence lines and the ordifated
wards a larger mole fraction of specidsall the way up to  thermodynamically stable demixe&trich films are formed
the critical temperaturd .=0.796 as the plot in Fig.(4)  exclusively through discontinuous phase transitions. Widen-
clearly shows. ing of the one-phase region of demixdsirich films contin-

Eventually, for sufficiently largeyy,=1.0160 the plot in ues until the one-phase region of the demix&dijch films
Fig. 4(d) reveals that &-rich, demixed film has entered the has been entirely removed from the phase diadgrser Fig.
picture. Hence, the coexistence between a mixed and dé&(d)].
mixed, A-rich film is replaced by coexistence betwe®rand
B-rich demixed films for temperatures somewhat below the
critical point demarcated by .=0.804 andA=0.058. Just V. SUMMARY AND CONCLUSIONS

prior to reaching this critical point, however, the composition  |n this work we focus on the wetting characteristics of an
of the demixed film changes to the extent that it again beasymmetric binary mixture near a selective, planar, and
comes(weakly) A rich. In addition, two other critical points  chemically homogeneous substrate. Model parameters are
between a mixed and a demixegtyich film (T.=0.764 and  tuned such that in the bulk the mixture tends to phase sepa-
A=-0.230 and between a mixeB-rich and a gaseous film rate where the asymmetryi.e., difference in attraction
are presentT.=0.762 andA=—0.013. strength betwee-A andB-B interaction$ is chosen such
The dependence of mixture properties on the attractiomhat in the demixed liquid state the formation éfrich
Strength of the solid substrate is illustrated in greater detaibhases is favored. We emp|oy a lattice model and assume a
by the phase diagrams,(T) plotted in Fig. 5. Taking Fig. mean—field representation of the intrinsic free endfgyc-
5(a) as a reference we note by comparing it with the plot intional). Even though this may seem an oversimplification of
Fig. 5(b) that two new coexistence lines nameh2™(T)  “real” fluid mixtures at first glance, it is noteworthy that
and ,uQFmF(T) arise. As one can see from the inset in Fig.results obtained for such a model can be brought into semi-
5(b) these two coexistence lines have different slopes suchuantitative agreement with recent experimental data pro-
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< Berich A-rich — may support a tendency towards mixing a binary fluid such
0.82 : : that initially A-rich films eventually becomB rich. The con-
080 | 1otis ] centration of componer® in these films is maximum at the
e 078 | LN ] inversion temperatur€,,, . For sufficiently high selectivities
076 | | the substrate may induce demixing of théseich wetting
074 . . films to the extent that demixe#-rich films are completely
" 0.50 0.25 0.00 0.25 0.50 absent.
A These phenomena should in principle be observable in

. S parallel experiments where the solid surface is modified
FIG. 6. Plots ofT vs A for coexistence between demixéerich  chemically in a controlled and quantitative manner. As ex-
and mixed films of various compositions for several values@f  pected this chemical modification alters the fluid-substrate

indicated in the figure(®) demarcates the critical points. attraction[33]. However, experimentally it is generally quite
difficult to modify a solid surface such that the interaction
vided model parameters are chosen sengiB8]. with a given fluid (mixture) can be varied nearly on a con-

In the present work it turns out that even very slight de-tinuous scale. Nevertheless, we anticipate our results to be
viations of yg from the symmetric casgg=1 suffice to  useful in the interpretation of experimental investigations of
completely suppress the formation of demixgdich liquid ~ wetting of chemically modified substrates by fluid mixtures
phases in the bulk. This overall picture does not chang&34—34@. In these latter works x-ray reflectivity and diffuse
qualitatively for allyg<1. Hence, the special case of a sym- scattering under grazing angles are employed to investigate
metric mixture ((g=1) considered previously by yg29] the wetting behavior of binary organic mixtures wetting
and other§23—26 appears to have a somewhat “singular” silica and fused-silica surfaces. In RE35], for example, the
character. authors focus on liquid-gas interfaces and find a significant

Taking the present asymmetric mixture as a reference ighange in composition of the wetting film as the bulk coex-
seems most interesting to choose the selectivity of the soliggtence line is approached. Similar effects are observed here.
substrate such that the fluid-substrate interactions compefeor instance, approaching in Fig(ch the bulk coexistence
with the fluid-fluid ones in the sense that the substrate enetine from below along the isotherifi=0.75 one realizes that
getically prefers molecules of speciBsvhereas in the bulk an originally mixed film undergoes a transition to a demixed
formation of A-A pairs is energetically favored. B-rich film which is eventually transformed discontinuously

Our main results can then be summarized as follows. Fointo a demixedA-rich film sufficiently close to the bulk co-
xw=1.0 (i.e., for a nonselective solid substrate demixed €xistence line.

A-rich film coexists with a mixed one in which the mole  Another important question the present work does not ad-
fraction of specie#\ exceeds that of speci® That is, even dress is related to phase behavior of asymmetric mixtures if
though the film appears to be more or less mixed indicatedhey are confined to spaces of nanoscopic dimeKsion
by a lower value ofA, it still preserves a tendency towards Adain the interplay between asymmetry of the fluid—fluid
forming A-rich phases. This simply reflects the physical na-interactions and selectivity of the solid substrate is expected
ture of our referencebulk) mixture. As y,, increases, the to induce a complex phase behavior where the degree of

composition of the mixed film changes until eventually theconfinemente.g., the size of nanoscopic poresill become
concentration of molecules of speciBsiominates. an additional parameter that determines the phase behavior

However, the composition of the mixe@trich fims ex- 10 & large extent. The behavior of fluid mixtures in confined
hibits a nonmonotonic temperature dependence. This is illussPaces is important in a variety of contexts ranging from, say,
trated by the plot in Fig. 6 which shows that beyond a certairPurification of gas mixture$37] to catalysis[38]. A study
thresholdy,,=1.0145 an inversion temperature exist for thefocussing on asymmetric binary mixtures under nanoscopic
composition of the mixed-rich film [see Eq.(4.3)]. ForT  confinement by selective walls is presently under \&§j.
<T,, the concentration oB molecules in the mixed film

coexisting with a demixedA-rich film increases steadily. ACKNOWLEDGMENT
This temperature dependence is invertedTerT;,,. Now, _
the concentration of molecules of specidecreases witfi We are grateful to the Sonderforschungsbereich 448

until eventually the concentration of molecules of spedies “Mesoskopisch strukturierte Verbundsysteme” for financial
in the mixed film exceeds that of molecules of spe@e¥he  support.
inversion temperature decreases slightly with increaging

as plots in Fig. 6 show. APPENDIX A: DERIVATION OF THE MEAN-FIELD

_Beyond_ a c_ertain thresholdwz_l_.01574 a stable _de- HAMILTONIAN
mixed, B-rich film appears, coexisting separately with a
mixed B-rich one and a demixed-rich one. By varyingyw As was shown in Ref.29] one can work out expressions

appropriately all four phasdse., gaseous, mixeB rich, and  for the numberN,a (Ngg) of A-A(B-B) pairs, that is di-
demixed A- and B-rich films) may coexist at a quadruple rectly connected sites both of which are occupied by a mol-
point. Thus, by fine tuning the fluid-substrate attraction onescule of specieé\(B). Likewise, expressions fa¥,g(s) and
may change the physical nature of adsorbed wetting films ithe total number of molecules of speci#andB at the solid
rather spectacular ways. For intermediate selectivities onsubstrateNaw(s) andNgw(s) have been worked out in Ref.
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[29]. The resulting expressions presented in Egsh—(2.7) 5
of Ref.[29] contain terms that can be cast as ; Si,I=np (A3b)

; Sk,lsk,|:1:; Sk,lpltlmltlznzl PP =1 MMy g,
' ' (Ala) May be employed in Eqg2.4) and (2.5 of Ref. [29] to
replace the sum over sites in lattice plahesl,z.
5 Hence, Eqs(Al) as well ag/A3) permit us to write down
% Sk,lsk,ufg Sk,|P|¢1=nZ pipi=1my, (Alb)  the mean-field expressions

z

n
; 5§,|Sﬁ,|i1:§ 5§,|P|i1:n§|: pipi=1, (Alc) NAA(P,m)=§|Zl [pip1+2(M+1)(mM 1+ 1)

) ) +pipi— (M4 1) (M- +1)+4pf(m+1)2],
; Sk,lsk,lt1:E Sk,|P|¢1m|¢1:nEl P1Pr=1Myxq

kl (Ada)
(Ald)
z
23 -1 -1
at the mean-field level. In addition, Ngs(p,m) = 8= Lpipr+a(M—1)(mM;—1)
NN(K
S o) S s oaS 5 pmodnS g +pipr (M= 1)(My = 1)+ 4pF(m—1)2]
& Skl 2 Smi=42y S > P on Adb)
a
NN(K) n
> s > SE =42, spi=4nY, pPmy, (A2b) Nag(p,m) = Z[pip1e2(I=mimisy) +pip— 1 (1—mimy_y)
A =S L T '
NN(K) +apH(1-mm)], (A4c)
; Sk mzl 3§m:4; Sk,IPI:4n2| pf.  (A2c) .
"o Naw(p,m) = S[pa(1+my)+p(1+m,)],  (Add)

; SE'Imzzl Sm,I:4% SE,|P|m|:4n§I: pfm; (A20)

Now(p.) = STpa(1=my) + p,(1-my)],  (Ade)

arise where the summation over the four nearest neighbors
(k) of lattice sitek can be carried out explicitly if Eq$2.6)  which follow after somewhat tedious but straightforward al-
and(2.7) are invoked. Finally, gebraic manipulations.

Replacing now in Eq.(2.2, Nj;j(s) and Njw(9)(i,]
(A3a) =A,B) by their mean-field counterparts given in E¢&4)

S =npmy, ,
% kI =P eventually yields

n z
Hmi(p,m) = % ;1 [piprs1(M+1)(My 1+ 1)+ pypy— o (My+1)(My_ 1+ 1) +4p;py(my+1)2]

z

n n
5 2 oo a(Mi= 1M1= 1)+ pipr (M= 1M = 1)+ dppr(m— 1))+ ==

+

z

EAWn
Xlzl pip1+1(L—mm 1) +pipi—1(L—mm_1) +4p;p (L —mm) + T[P1(1+ mp)+p,(1+m,)]

Wn £
+ A [y my) +p(1-m)]-n S, piu (AS)

as the mean-field analog &f given in Eq.(2.2). In Eg. (A5) the first two sums account for the interaction between a pair of
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molecules of specieé and B, respectively. Likewise, the third sum represents the contributioA-& attractions to the
mean-field Hamiltonian. The next two terms represent the interaction between a molecule of ApswiB with the solid
substrate and the last term couples the system tmnénitely large external reservoir of matter. Moreover, it is easy to verify
from Eg.(A5) that in the limit of a symmetric binary mixtureyf,=1) and a nonselective solid substrajg,& 1) we recover
the expression given in E@2.10 of Ref.[29].

APPENDIX B: DERIVATION OF EQS. (2.12

To derive Eqs(2.12 we depart from Eq(2.10 which may be written more explicitly as

=1 hen 1+m, 1-m,
(n=np)""Min n

z nn
®(n,m)=|]_[ n|(1+m|)/2( AA=—m)2: (B1)
=

in the limit n,{n;}—o0 using Stirling’s approximatiofi29]. Using[see Eqs(2.6) and(2.7)]

1+
pr=p 2m| , (B2a)
1-m
mB=p|<—2 '), (B2b)
so that Eq(B1) may be recast as
InG)(p,m)=—n|Z1 p|Inp|+(1—p|)ln(1—p|)—p|ln2+%[(1+m|)ln(1+m|)+(1—m,)ln(1—m|)] . (B3)

Hence, together with Eq$2.11) and(A5), Eqg. (B3) yields

z

keT < keT
o(pMTp)=== 3 [plnpr+(1=p)In(L=p) = pin 2]+ 5 35 p[(1+m)In(1+m)+(1=m)in(1—m)]

z

+ é IZ:l [pipr+1(M+1)(My 1+ 1)+ pyp o (My+1)(My_ 1+ 1) +4p;py(my+1)?]

+ % ;1 [piprs (M=) (M1 — D)+ pip—1(m—1)(my_1— 1) +4p;p (M —1)?]

€AB -
* a7 Z’l [pipi+1(L=mmy 1)+ pip -1 (1—mm_q) +4p;p(1—mm;)]

€AW EAWX
+ o LMy + 1)+ py(my+1)]= =5 [py(My— 1)+ py(m,—1)] -

N| K

21 oy (B4)

Differentiating Eq.(B4) according to Eqs(2.12) we find

Pk
1-py

_ 1
h§=—pu+B"In + E{(l"‘ my)In(1+my)+(1—myIn(1—my)} |+ g(mk+ Dlpkr1(Mgpa+ 1) +pp_a(me_1+1)

€Xb €AB
Hapdmit D1+ —= (M= Dl 1(Mir 1= D+ pr-a(Mi-1 = D+ 4pdd M= D]+ == [pier 21— MiMy.4)

+ P a(1=mmy )+ 4py L= M) T+ S Sl (1+my)+ (1= M) 1+ el (1+m) + xy(1-my) T} (B5a)
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Pk _ 1+
h3=—| B *In—

m
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my €
) + E[Pk+l(mk+1+ D+ pr-a(m 1+ 1) +4p(me+1)]

€Xb
+ T[Pk+1(mk+1_1)+Pk—l(mk—l_ 1)+4p(m—1)]

€AB
+ 5 [P a(1= MMy 1)+ pia (1= mymyg) + 4py(1—m) ]

+ E%V[ﬁkl{ml(l_)(w) + 1= xutt SAM(1+ xy) + 1+ xut] (B5b)

whereu=pu— B tn2 and &;j is the Kronecker symbol.

[1] P.G. de Gennes, Rev. Mod. Ph¥s, 827 (1985.

[21] C. Rasca and A.O. Parry, Naturd07, 986 (2000.

[2] D. E. Sullivan and M. M. Telo da Gama, Fluid Interfacial [22] S. Sacquin, M. Schoen, and A.H. Fuchs, J. Chem. PHg.
Phenomengedited by C. A. CroxtoriWiley, New York, 1986. 1453(2003.

[3] S. Dietrich, inPhase Transitions and Critical Phenome real- [23] F. Schmid and N.B. Wilding, Phys. Rev.@3, 031201(2001).
ited by C. Domb and J. L. LebowitAcademic Press, London, [24] Y. Fan, J.E. Finn, and P.A. Monson, J. Chem. PI9%.8238

1988, Vol. 12.

(1993.

[4] M. Schick, in Liquids at Interfaces Les Houches Session [25] E. Kierlik, M.L. Rosinberg, Y. Fan, and P.A. Monson, J. Chem.

XLVIIl, edited by J. Charvolin, J. F. Joanny, and J.
Justin(North-Holland, Amsterdam, 1990p. 415.
[5] D. Bonn and D. Ross, Rep. Prog. Phgd, 1085(2001).
[6] R. Evans and M. Chan, Phys. Wordd 48 (1996.

Zinn— Phys.101, 10947(1994).
[26] N.B. Wilding, F. Schmid, and P. Nielaba, Phys. Rev5§
2201(1998.
[27] N. Choudhury and S.K. Ghosh, Phys. Rev.6E, 021206

[7] H. Cao, Z.N. Yu, J. Wang, J.O. Tegenfeldt, R.H. Austin, E. (2002.

Chen, W. Wu, and S.Y. Chou, Appl. Phys. Leit, 174(2002. [28] R. Evans, inLiquids at Interfaces Les Houches Session
[8] A.V. Melechko, T.E. McKnight, M.A. Guillorn, V.I. Merkulov, XLVIII (Ref. [4]), p. 1.

B. lllic, M.J. Doktycz, D.H. Lowndes, and M.L. Simpson, [29] D. Woywod and M. Schoen, Phys. Rev.6EZ, 026122(2003.

Appl. Phys. Lett.82, 976 (2003.

[30] D. Woywod and M. Schoefunpublishedl

[9] T.C. Kuo, D.M. Cannon, J.J. Tulock, M.A. Shannon, J.V. [31] D. A. Lavis and G. M. Bell,Statistical Mechanics of Lattice

Sweedler, and P.W. Bohn, Anal. Cheitb, 1861(2003.

Models Vol. I. Closed-Form and Exact SolutiofSpringer-

[10] J. S. Rowlinson and B. WidonMolecular Theory of Capillar- Verlag, Berlin, 1989, p. 60.

ity (Oxford University Press, Oxford, 1982
[11] J.G. Dash, Phys. Rev. B5, 3136(1976.
[12] J.W. Cahn, J. Chem. Phy&6, 3667 (1977).

[32] H. Bock, D. J. Diestler, and M. Schoen, J. Phys.: Condens.
Matter 13, 4697 (2000.
[33] G. Rother, D. Woywod, G. H. Findenegg, and M. Schéam-

[13] C. Ebner and W.F. Saam, Phys. Rev. L88, 1486(1977). published.
[14] W.F. Saam and C. Ebner, Phys. RevlA 1768(1978. [34] A. Plech, U. Klemradt, M. Huber, and J. Peisl, Europhys. Lett.
[15] R. Pandit, M. Schick, and M. Wortis, Phys. Rev.2B, 5112 49, 583(1999.

(1982. [35] A. Plech, U. Klemradt, and J. Peisl, J. Phys.: Condens. Matter

[16] D. Nicolaides and R. Evans, Phys. Rev. Lét}, 778(1989. 13, 5563(2001).

[17] S. Dietrich and M. Schick, Phys. Rev. 3, 4952(1985.
[18] K. Binder and D. Landau, Phys. Rev.&, 1745(1988.
[19] R. Lipowsky, Interface Sci9, 105 (200J.

[36] A. Plech, U. Klemrath, M. Aspelmeyer, M. Huber, and J. Peisl,
Phys. Rev. 65, 061604(2002.
[37] R. Denoyel and E. Sabio Rey, Langma#, 7321(1998.

[20] S. Dietrich, in Proceedings of the NATEASI “New Ap- [38] N. Y. Chen, T. Degan, Jr., and C. M. Smitfiplecular Trans-
proaches to Old and New Problems in Liquid State Thgory port and Reaction in Zeolites: Design and Application of
edited by C. Caccamo, J. P. Hansen, and G. Skliwer, Shape Selective Catalysid/iley-VCH, New York, 1994.

Dordrecht, 1999 p. 197.

[39] D. Woywod and M. Schoefunpublishedl

031606-14



