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Wetting of a selective solid surface by an asymmetric binary mixture
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~Received 23 October 2003; published 31 March 2004!

We consider a lattice-gas model of an asymmetric binary mixture in which the attraction between a pair of
molecules of speciesA exceeds that between a pair of molecules of speciesB. The interaction between two
molecules of speciesA and B is chosen to promote the formation of demixedA-rich liquid bulk phases.
Molecules interact with a selective solid wall, preferentially adsorbing molecules of speciesB. Positions of
molecules are restricted to sites on a simple-cubic lattice. We invoke a mean-field representation of the
Hamiltonian governing all intermolecular interactions and assume only nearest-neighbor attractions. Minimiz-
ing the grand-potential functional of the lattice gas numerically, phase diagrams for films wetting the solid
substrate are obtained. One of our key findings concernsB-rich mixed or demixed films forming in the vicinity
of the solid surface and coexisting with demixedA-rich films. The formation ofB-rich films can be understood
as a result of the competition between the asymmetry of the~bulk! mixture and the selectivity of the solid
surface. The concentration of componentB in B-rich mixed films shows a peculiar temperature dependence. It
first increases with temperatureT until an ‘‘inversion’’ temperatureTinv is reached, and then declines forT
>Tinv until the critical point between~demixed! A- andB-rich films is reached.

DOI: 10.1103/PhysRevE.69.031606 PACS number~s!: 68.08.Bc, 05.70.Np, 61.46.1w, 68.55.Nq
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I. INTRODUCTION

If a fluid interacts with a solid substrate a wealth
surface-induced phase transitions arises that are gene
subsumed under the term ‘‘wetting’’@1–5#. Wetting phenom-
ena are of practical importance in a variety of contexts. Th
determine how paints stick to solid surfaces or how de
gents remove stains from fabric@6#. Moreover, wetting is the
key issue in an important emerging and rapidly develop
field of technology known as ‘‘nanofluidics,’’ where wettin
characteristics of nanostructured solid surfaces are utilize
manipulate tiny amounts of fluid@7–9#.

Investigations of wetting phenomena at a molecular le
have a long history@10#. One of the earliest attempts to cla
sify systems with respect to their wetting behavior is a stu
by Dash, who analyzed experimental sorption isotherms
physisorbed gases@11#. It was subsequently realized th
wetting phenomena may be perceived as substrate-ind
phase transitions. An example are transitions from par
to complete wetting analyzed in the seminal papers by C
@12# and Ebner and Saam@13,14#. Later Panditet al., who
built on Dash’s study, presented a more comprehensive
vestigation of multilayer adsorption on attractive so
substrates@15#. Since then more specialized topics in t
context of wetting have been considered. Examples incl
the nature of the prewetting critical point@16#, the order of
wetting transitions@17,18#, or the wetting of structured sur
faces@19–22#.

Whereas the wetting of planar substrates~structured or
not! by pure fluids is quite well understood, less work h
been devoted to binary mixtures@5#. Theoretically, most

*Electronic address: joerg.silbermann@fluids.tu-berlin.de
†Electronic address: dirk.woywod@fluids.tu-berlin.de
‡Electronic address: martin.schoen@fluids.tu-berlin.de
1063-651X/2004/69~3!/031606~14!/$22.50 69 0316
lly

y
r-

g

to

l

y
of

ed
al
n

n-

e

s

studies are concerned with a rather simplistic model, nam
that of asymmetricbinary mixture in which the interaction
between like molecules of both components as well as t
sizes are set equal@23–25#. For such a mixture Schmid an
Wilding focus on the wetting of nonselective substrates, t
is, a solid surface that does not prefer molecules of eit
component energetically@23#. For this system Wildinget al.
have determined the bulk phase diagram in an earlier pa
based on Monte Carlo and mean-field calculations@26#. A
slightly more complex situation was considered by Fanet al.
@24# and Kierlik et al. @25# who employed selective solid
substrates in their work on wetting characteristics of sy
metric binary mixtures.

However, with respect to experimental systems solid s
strates should not only be selective for mixture compone
but the mixture itself should be asymmetric, that is, the
teraction between like molecules of one species should d
from that between molecules of the other mixture comp
nent. Even though this situation is the experimentally m
relevant one, little theoretical attention has been given t
thus far. An exception~and to the best of our knowledge th
only one! is the work by Choudhury and Ghosh, who co
sider an asymmetric binary mixture of Lennard-Jones m
ecules in slit pores@27#. However, these authors are inte
ested in confinement effects rather than wetting phenom
occurring at asinglesolid surface which are the focal poin
of the present study.

Since the dimension of the parameter space necessa
describe an asymmetric binary mixture at a selective s
surface is already quite large, we base our work on a lat
model in which positions of molecules are restricted to si
of a simple-cubic lattice. We simplify our model even furth
by considering only short-range~i.e., nearest-neighbor! inter-
actions among molecules. Thus, we implicitly limit our wo
to ~complete! wetting excluding, to some extent, phenome
like, say, prewetting which occurs only in the presence
©2004 The American Physical Society06-1
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long-range surface interactions@28#. Within a mean-field ap-
proximation for the intrinsic free-energy functional, we em
ploy density functional theory to determine the phase beh
ior of this model@29#.

The model has been successfully employed in the pas
investigate confinement-driven phase transitions in nano
rous media where, however, the emphasis was strictly
symmetricbinary mixtures and the pore walls are nonsel
tive @29#. The bulk behavior of such a symmetric bina
lattice gas is qualitatively similar to the one observed ear
by Wilding et al. for their related but continuous symmetr
model mixture@26#. Wetting of an isolated solid surface ha
also been studied for this model@30#.

In the present paper we extend the model of Woywod
Schoen@29,30# to the case of asymmetric binary mixture
wetting a selective, planar, and a chemically homogene
substrate surface. Our paper is organized as follows. In
II we outline the theoretical foundations of our study whe
we introduce the model in Sec. II A and develop its mea
field theoretical treatment in Sec. II B. Section III is given
a consideration of thermodynamic equilibrium states. We
gin in Sec. III A with a brief discussion of the limit of van
ishing temperature in which we can solve our model anal
cally. The more general case of nonvanishing temperatur
considered in Sec. III B, where symmetry considerations
employed in Sec. III C to reduce the numerical burden. T
determination of phase diagrams is outlined in Sec. III
Section IV is devoted to a presentation of our results star
with the bulk in Sec. IV A and continuing with wetting phe
nomena in Sec. IV B. Finally, we summarize our findings
Sec. V.

II. THEORY

A. Model system

We consider a binary (A-B) mixture on a simple cubic
lattice ofN5nz sites, whose lattice constant is,. The posi-
tion of a fluid molecule on this lattice is specified by a pair
integers (k,l ) where 1<k<n labels the position in anx-y
plane and 1< l<z determines the position of that plan
along thez axis. A specific site may be occupied either by
molecule of speciesA or B, or it may be altogether empty. T
describe individual configurations on the lattice we introdu
a matrixs of occupation numbers such that

sk,l5H 11, site occupied by molecule of componentA

0, empty site

21, site occupied by molecule of componentB.

~2.1!

For a given configurations the total number of sites occupie
by molecules of speciesA or B is given byNA(s) or NB(s),
respectively, for which explicit expressions are given in E
~2.2a! and ~2.2b! in the paper by Woywod and Schoen@29#.
Based upon these expressions Woywod and Schoen also
culated the total number ofA-A@NAA(s)#, B-B@NBB(s)#,
andA-B nearest-neighbor pairs@NAB(s)# on the lattice@see
Eqs. ~2.6a!, ~2.6b!, and ~2.6c! in Ref. @29##. We formally
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confine the mixture by two impenetrable solid substrates
cated atl 50 andl 5z11 and introduce the number of mo
ecules of typeA at those substrates,NAW(s), and that of type
B, NBW(s), respectively@see Eqs.~2.4! and ~2.5! of Ref.
@29##.

In addition, we assume all interactions to be pairwise
ditive and model them according to square-well potenti
where the width of the attractive well is set equal to t
diameters of a fluid molecule~taking the same value ofs
for both species!. Hence, we restrict ourselves exclusively
nearest-neighbor attractions. The assumption of a maxim
occupation of each site by at most one molecule@see Eq.
~2.1!# accounts for the infinitely hard core imposed by t
square-well potential.

The energy function~i.e., the Hamiltonian! governing our
system can then be cast as

H~s!5e@NAA~s!1xBNBB~s!#1eABNAB~s!

1eW@NAW~s!1xWNBW~s!#2m@NA~s!1NB~s!#,

~2.2!

where

e[eAA , ~2.3a!

eW[eAW , ~2.3b!

xB[
eBB

eAA
, ~2.3c!

xW[
eBW

eAW
. ~2.3d!

In Eqs. ~2.3!, e determines the depth of the attractive we
~i.e., the attraction strength! of the A-A potential function.
Likewise, eW describes the attraction of a molecule of sp
ciesA by the solid substrate.

ParameterxB will henceforth be referred to as the ‘‘asym
metry’’ of the model mixture wherexB.1 characterizes a
binary mixture in which the formation ofB-B pairs is ener-
getically favored whereas forxB,1 this is the case forA-A
pairs. For the special casexB51 the asymmetric mixture
degenerates to the symmetric case previously studied
Refs.@29,30#. In addition, we define the ‘‘selectivity’’ of the
solid surfaces by specifyingxW in Eq. ~2.3d! in a fashion
similar toxB in Eq. ~2.3c!. Hence, the parameter space of o
model is spanned by the set$e,eAB ,eW ,xB ,xW%. To limit
the complexity of our model we deliberately choose

m[mA5mB ~2.4!

in all the calculations of this work@see Eq.~2.2!#.
Based upon these considerations we may readily in

duce the partition function in the grand canonical ensem
via @31#

J~N,T,m!5(
$s%

exp@2bH~s!#[exp~2bV!, ~2.5!
6-2
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whereV(N,T,m) is the grand potential andN is the ‘‘vol-
ume’’ ~i.e., the number of sites! on the lattice.

B. Mean-field treatment

To proceed we introduce a mean-field approximation
the Hamiltonian specified in Eq.~2.2!. It consists ofassum-
ing that within each planel parallel to the solid substrates th
occupation number at each lattice site can be replaced b
averageoccupation number for the entire plane. On acco
of the symmetry-breaking nature of the solid substrate th
average occupation numbers will generally vary betwe
planes, that is they will change withl. Hence, we introduce
the totallocal density,

r l5r l
A1r l

B5
1

n (
k51

n

sk,l
2 [

nl
A1nl

B

n
[

nl

n
, ~2.6!

and thelocal ‘‘miscibility’’ ml ,

mlr l5r l
A2r l

B5
1

n (
k51

n

sk,l , ~2.7!

as convenient alternative order parameters at the mean-
level. In the thermodynamic limitn→`, r l ~in units of ,3)
is dimensionless and continuous on the interval@0,1# which
implies thatml is continuous and dimensionless as well b
on the interval@21,1#.

Mathematically speaking, the mean-field assumption c
sists of mapping then3z occupation-number matrixs onto
the z-dimensional vectorsnA5(n1

A ,n2
A , . . . ,nz

A) and nB

5(n1
B ,n2

B , . . . ,nz
B) where nl

i is the total number of mol-
ecules of speciesi on lattice planel regardlessof their spe-
cific arrangement. Hence, we replaceH(s) by its mean-field
analogHm f(n

A,nB), where we note in passing that the tran
formations→nA,nB is not bijective in general~also see Sec
III A !.

To derive the mean-field analog of Eq.~2.5! we rewrite it
more explicitly as

J5 (
s1,1521

1

(
s2,1521

1

. . . (
sn,z521

1

exp@2bH~s!#

5S )
l 51

z

(
s1,l521

1

(
s2,l521

1

. . . (
sn,l521

1 D exp@2bH~s!#.

~2.8!

Hence, at the mean-field level, we may replace then3z
sums in parentheses above according to

J→Jm f5S )
l 51

z

(
nl

A
50

n

(
nl

B
50

n2nl
A D Q~nA,nB!

3exp@2bHm f~nA,nB!#, ~2.9!

where the combinatorial factor
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Q~nA,nB!5)
l 51

z S n

nl
A1nl

BD S nl
A1nl

B

nl
A D 5)

l 51

z S n

nl
D S nl

nl
AD
~2.10!

represents thea priori possible configurations correspondin
to the same value ofHm f , that is, the degeneracy of a pa
ticular microstate characterized by vectorsnA andnB.

In the thermodynamic limit~i.e., asn→`) it is conve-
nient to replace the discrete variablesnl

i by their ~quasi–!
continuous counterpartsr l

i5nl
i /n so that the double sum

can be replaced by double integrals, that is,

(
nl

A
50

n

(
nl

B
50

n2nl
A

. . . →
n@1

n2E
0

1

dr l
AE

0

12r l
A

dr l
B . . . ,

where thez-dimensional vectorsrA andrB are defined analo-
gously to nA and nB, respectively. Changing variable
r l

A ,r l
B→r l ,ml via Eqs.~2.6! and~2.7! in this last expression

permits us to eventually cast Eq.~2.9! as

Jm f5n2zS )
l 51

z E
0

1

dr l
AE

0

12r l
A

dr l
BDQ~rA,rB!

3exp@2bHm f~rA,rB;m!#

5
n2z

2z E r drE dmQ~r,m!

3exp@2bHm f~r,m;m!#

[
n2z

2z E r drE dmexp

3@2bv~r,m;T,m!#, ~2.11!

wherev(r,m;T,m) defines an energy hyperplane in the mu
tidimensional space spanned by the set of local order par
eters$r,m% for given values ofT andm.

The function v(r,m;T,m) may have many extrema in
r–m space. The necessary conditions for these extrem
exist may be stated as

]v~r,m;T,m!

]rk
5h1

k~rk21 ,mk21 ,rk ,mk ,rk11 ,mk11!50,

~2.12a!

]v~r,m;T,m!

]mk
5h2

k~rk21 ,mk21 ,rk ,mk ,rk11 ,mk11!50,

~2.12b!

where explicit expressions for the functionsh1
k and h2

k are
given in Eqs.~B5!. Equations~2.12! may have several solu
tions a51, . . . ,i . It is then sensible to introduce the notio
of a phaseP a through the set of 2z elements

P a5$ra,ma% ~2.13!
6-3
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wherera andma are not only simultaneous solutions of Eq
~2.12! but alsominima of v(r,m;T,m). At this point it is
important to realize that in the thermodynamic limit~i.e., as
n→`) the global minimumr* , m* of the functionv will
completely determine the integral in Eq.~2.11!. In the limit
n→`, this permits us to rewrite Eq.~2.11! as

v~T,m!5
Vm f

N

52
ln Jm f~N,T,m!

bN

52
ln Q~r* ,m* !

bN 1
Hm f~r* ,m* !

N ~2.14!

wherer* andm* represent the ‘‘configuration’’ at the abso
lute minimum of the grand–potential densityv(T,m), that is
the thermodynamically stable phaseP* whereas all otheri
21 phases are only metastable~except for points of phase
coexistence, see Sec. III D!.

III. EQUILIBRIUM STATES

A. Limit of vanishing temperature

Let us now briefly discuss the special case in which
transformationsk,l→r l ,ml is bijective. From the definition
of r l and ml in Eqs. ~2.6! and ~2.7! it is immediately clear
that this can only be the case if all matrix elements in themth
row of s are equal assuming one of the three values give
Eq. ~2.1!. This then implies thatr l50,1 is discrete and
double–valued. In other words, across any given lat
planel all sites must be empty, or occupied by molecules
one or the other species so thatr l5r l

A51 or r l5r l
B51,

respectively. To discriminate between these cases, Eq.~2.7!
gives ml51 if r l5r l

A51 whereasml521 if r l5r l
B51.

Thus,

nl5n, ~3.1a!

nl
A5H 0

nl ,
~3.1b!

implying Q51 from Eq. ~2.10!, which is mathematically
equivalent to saying that the transformationsk,l→r l ,ml is
bijective.

If this is so we conclude from Eq.~2.11! that

va~P a;T,m!5
Hm f~P a!

N . ~3.2!

This latter expression is identical to Eq.~2.14! in the limit
T50 replacing, however, in Eq.~3.2!, P a by P* . Thus, in
this sense

v0~m!5v0~P* ;m!5
Hm f~P* !

N ~3.3!
03160
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is a consequence of the fact that atT50 the mean-field
treatment becomes exact~i.e., the transformationsk,l
→r l ,ml becomes bijective! where the subscript ‘‘0’’ was
introduced to emphasize the limitT50. Equation~3.2! is
important becauseHm f(P a) can be calculated analyticall
for our present model@32#.

B. Nonvanishing temperatures

For T.0 we are concerned with solutions of Eqs.~2.12!.
To find these it is convenient to introduce the~transpose of
the! 2z-dimensional vector

xT5~r1 ,m1 , . . . ,r l ,ml , . . . ,rz ,mz! ~3.4!

which permits us to rewrite Eqs.~2.12! as

f~x!51
h1

1~r0 ,m0 ,r1 ,m1 ,r2 ,m2!

h2
1~r0 ,m0 ,r1 ,m1 ,r2 ,m2!

A

h1
l ~r l 21 ,ml 21 ,r l ,ml ,r l 11 ,ml 11!

h2
l ~r l 21 ,ml 21 ,r l ,ml ,r l 11 ,ml 11!

A

h1
z~rz21 ,mz21 ,rz ,mz ,rz11 ,mz11!

h2
z~rz21 ,mz21 ,rz ,mz ,rz11 ,mz11!

2 5
!

0.

~3.5!

Suppose a solutionx0 of Eq. ~3.5! exists for a given tempera
ture T0 and a chemical potentialm0. We are then seeking a
solutionx for slightly different thermodynamic conditions

T5T01dT, ~3.6a!

m5m01dm, ~3.6b!

wheredT anddm are sufficiently small so that we may ex
pand Eq.~3.5! in a Taylor series aroundx0,

f~x!5f~x0!1“fT~x!ux5x0
•~x2x0!1O~ ux2x0u2![0,

~3.7!

retaining only the linear term where thez-dimensional vector
“

T5(]/]r1 ,]/]m1 , . . . ,]/]rz ,]/]mz). Introducing the
functional matrixD through the dyad“fT(x), that is

D[“f T~x!51
]h1

1

]r1

]h2
1

]r1

. . .
]h2

z

]r1

]h1
1

]m1

]h2
1

]m1

. . .
]h2

z

]m1

A A � A

]h1
1

]rz

]h2
1

]rz

. . .
]h2

z

]rz

]h1
1

]mz

]h2
1

]mz

. . .
]h2

z

]mz

2 , ~3.8!
6-4
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we can solve Eq.~3.7! iteratively by rewriting it as

xi 1152D21
•f~xi !1xi[dxi1xi ~3.9!

where Eq.~3.5! has also been used and the elements ofD can
easily be computed with the aid of Eqs.~B5!.

C. Symmetry considerations

Since we restrict ourselves to nearest-neighbor inte
tions, h1,2

k depend only on the set of variables$r j ,mj uk21
< j <k11% as one can verify from Eqs.~B5!. Hence,D in
Eq. ~3.8! has a band structure where all elements

]h1,2
i

]r j
50, ~3.10a!

]h1,2
i

]mj
50, ;u i 2 j u>2. ~3.10b!

Moreover, sincev(P) is continuous and differentiable w
have

]h1
k

]ml
5

]2v

]ml]rk
5

]2v

]rk]ml
5

]h2
k

]rk
, ;k,l ; ~3.11!

that is D is symmetric with respect to its main diagona
Since in this work we focus on planar, chemically homog
neous substrates an additional symmetry exists for the l
order parameters with respect to a~virtual! midplane on the
lattice which may coincide with an actual lattice plane ifz is
odd. Therefore, ifz is odd we conclude that

rF2k5rF1k , ~3.12a!

mF2k5mF1k , k51, . . . ,F21, ~3.12b!

whereF5(z11)/2. If, on the other hand,z is even,

rF2k115rF1k , ~3.13a!

mF2k115mF1k , k51, . . . ,F, ~3.13b!

where now, of course,F5z/2.
To simplify the subsequent discussion we restrict o

selves to the case of evenz where we note in passing that fo
sufficiently largez the distinction between odd and eve
numbers of lattice planes becomes, of course, irrelev
Then we may reorganize the 2z elements of vectorsx, f, and
“ such that the resulting matrixD has point symmetry with
respect to an inversion center. More specifically, we m
expressD formally as

D5S Ã B̃

B A
D , ~3.14!
03160
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where elements of the submatrices are related through

ÃF2k11,F2 l 115Ak,l ~3.15a!

B̃F2k11,F2 l 115Bk,l , k,l 51, . . . ,z. ~3.15b!

It is then easy to verify that

B̃5S 0 . . . 0

A � A

]h2
F11

]rF

]h1
F11

]rF

0 . . . 0

]h2
F11

]mF

]h1
F11

]mF

0 . . . 0

D , ~3.16!

that is, it contains only four nonzero elements. Similarly, t
last two rows of submatrixÃ can be cast as

Ã5S A . . .

0 . . . 0
]h1

F21

]rF

]h2
F21

]rF

]h1
F

]rF

]h2
F

]rF

0 . . . 0
]h2

F21

]mF

]h1
F21

]mF

]h2
F

]mF

]h1
F

]mF

D .

~3.17!

One then realizes that inÃ the element

]h2
F

]rF
5

]2v

]rF]mF
5

]2v

]mF]rF
~3.18!

appears, whereas inB̃ the conjugate element

]h2
F11

]rF
5

]2v

]rF]mF11
5

]2v

]mF11]rF
~3.19!

arises. Similar considerations apply to the pair of eleme
]h1

F/]rF and ]h1
F11/]rF as well as to the correspondin

two pairs of elements on the last rows ofÃ andB̃. Moreover,
it is apparent from symmetry properties stated in Eqs.~3.13!
(z even! that both]h2

F/]rF and ]h2
F11/]rF are acting on

the same element of the vectorx2x0 in Eq. ~3.7! such that
Eq. ~3.14! can be recast as

D85S Ã8 0

0 A8
D ~3.20!

where0 is thez3z zero matrix,Ã8 is identical withÃ ex-
cept for the last two elements in the two bottom rows, tha
@see Eq.~3.17!#,
6-5



Ã85S A . . .

0 . . . 0
]h1

F21

]rF

]h2
F21

]rF
S ]h1

F

]rF
1

]h1
F

]rF11
D S ]h1

F

]mF
1

]h1
F

]mF11
D

F21 F21 F F F F D , ~3.21!
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0 . . . 0
]h2

]mF

]h1

]mF
S ]h2

]rF
1

]h2

]rF11
D S ]h2

]mF
1

]h2

]mF11
D

r

o

q

c

a
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and the relation between the new submatricesÃ8 andA8 is
the same as that betweenÃ andA @see Eq.~3.15a!#.

Because of these symmetry considerations we may
place Eq.~3.9! by

x̃i 1152Ã821
•f~ x̃i !1 x̃i[d x̃i1 x̃i ~3.22!

where the~transpose of the! z-dimensional vectors

x̃T5~r1 ,m1 , . . . ,rF ,mF!, ~3.23a!

fT~ x̃!5~h1
1 ,h2

1 , . . . ,h1
F ,h2

F! ~3.23b!

and thez3z matrix Ã8 replace the 2z32z matrix D which
considerably reduces the numerical efforts necessary in s
ing the original Eq.~3.7! iteratively.

In practice, starting from a suitable solutionx̃0
a for a given

phaseP a we solve Eq.~3.22! iteratively until uf( x̃i 11)u
<10211 which requires typically 102– 103 iterations. Under
this condition,x̃i 11 is a~n approximate, numerical! solution
of the equation

f~ x̃!50. ~3.24!

D. Phase equilibria

In general, we are not only interested in solutions of E
~3.24! but, more specifically, in those solutions satisfying

vab~mab,T![va~P a;mab,T!5vb~P b;mab,T!.
~3.25!

Equation~3.25! defines the chemical potential at coexisten
mab between phasesP a andP b for a given temperatureT.
To determinemab at a slightly different temperatureT85T
1dT we expandv in a Taylor series around some chemic
potentialm i , say, that is

va,b~m i 11!5va,b~m i !1
dva,b

dm U
m5m i

~m i2m i 11!

1O~~m i2m i 11!2!

.va,b~m i !2 r̄ i
a,b~m i2m i 11!, T85const

~3.26!

where we dropped all other arguments to ease the notati
burden. The far right side of Eq.~3.26! follows from the fact
that
03160
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dv

dm
5(

l 51

z S ]v

]r l

dr l

dm
1

]v

]ml

dml

dm D1
]v

]m
5

]v

]m

52
1

z (
l 51

z

r l52 r̄, ~3.27!

where Eqs.~2.12! and ~B4! have also been employed andr̄
is the mean density on theentire lattice. Assuming Eq.~3.25!
to hold for m i 11 we can solve Eq.~3.26! for m i 11 to obtain

m i 115m i1
vb~m i !2va~m i !

r̄ i
b2 r̄ i

a
, ~3.28!

thus providing an iterative scheme to calculate the chem
potential at coexistence. It may be initiated by setting i
tially m i5m0

ab at the previous temperatureT0 and calculat-

ing r̄ i
a,b from x̃a,b at that temperature.

However,x̃a,b will no longer be solutions of Eq.~3.24! at
T8 and m i 11. Hence, we solve Eqs.~3.24! and ~3.28! until
udmu[m i 11

ab 2m i
ab&10211. Hence, for a given temperatur

P a and P b coexist at a chemical potentialmab[m i 11.
However, the associatedvab does not necessarily corre
spond to theabsolutebut may represent only arelativemini-
mum of the grand-potential density. If, on the other hand,
any paira, b, the grand potential density assumes itsglobal
minimum,P a andP b are thermodynamicallystable phases
at coexistence. The range of temperatures and chemica
tentials over which this condition is satisfied defines the
existence linemx

ab(T) betweenP a und P b as the set

mx
ab~T!5$mab,Tuvab~mab,T!5min

g
vg~P g;mab,T!%.

~3.29!

Moreover, the subsequent discussion will benefit from int
ducing the notion of a phase diagram as the union of
coexistence lines, that is,

mx~T!5 ø
a,b

mx
ab~T!. ~3.30!

IV. RESULTS

A. Fluid phase properties

1. Impact of the system size

In this work we are exclusively concerned with wetting
a single solid substrate by a fluid mixture. However, fo
6-6
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purely practical reasons@i.e., in order to minimize the dimen
sion of the vector functionf(x) in Eq. ~3.5!# appropriate
boundary conditions have already been introduced. Thro
the presence of two planar substrates at lattice planel
50,z11 our system is symmetric with respect to a pla
located halfway in between lattice planesl 5F and l 5F
11 (z even! thus permitting us to change variables acco
ing to x→ x̃.

However, for smallz the presence of a second substr
will generally cause unwanted confinement effects such
capillary condensation replacing wetting transitions wh
are the key issue here. To make sure that for the pre
choice of z512 and moderate fluid-wall attraction (eW5
21.075) wetting prevails, in Fig. 1 we present the local de
sity rk of an adsorbed film in thermodynamic equilibriu
with a bulk gas mixture. The plot in Fig. 1 clearly indicat
that the local density of the adsorbed film quickly approac
the density of the homogeneous bulk phase as one de
from the~lower! surface of the solid substrate. The range
distances from the solid substrate over whichrk deviates
from its constant bulk value is more or less the same reg
less of the specific conditions under consideration as we h
tested for several points along various coexistence lines.

FIG. 1. Local densityrk as function of lattice planek at a
critical point Tc.0.810, mc.22.464 at which demixedA- and
B-rich phases become indistinguishable. The solid substrate is
cated atk50. Discontuniuties reflect discrete nature of lattice-g
model. The dashed horizontal line represents bulk density un
identical thermodynamic conditions.
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deviation of the local density from its bulk value remai
always short-range even at critical points as the plot in Fig
reveals. This reflects the mean-field approximation for
Hamiltonian. Hence, we conclude that for the present cho
of z512 the distance between the solid substrates is s
ciently large so that confinement effects do not interfere w
wetting phenomena. In other words, we areeffectivelydeal-
ing with phenomena occurring at asinglesolid surface.

2. Asymmetry of the bulk mixture

The key issue of this work is the combined effects
asymmetry of the mixture~i.e., xBÞ1) and selectivity of the
solid substrate~i.e., xWÞ1). To illustrate first the impact of
asymmetry we consider as reference the symmetric b
mixture characterized byxB51. In addition we seteAB5
20.5 andeAA521.0 such that the mixture tends to decom
pose on account of the relatively weak attraction betwe
molecules of unlike species relative to the attraction betw
like molecules. In Fig. 2~a! we present the phase diagra
mx(T) for this special case. It consists of a line of disco
tinuous phase transitionsmx

GaL(T) along which a stable ga
phase~G! coexists with a demixedA-rich liquid phase~aL!
up to a temperatureTt.1.082 ~see Table I!. The term
‘‘ a-rich’’ therefore refers to the fact that an excess of thea
component is present. However, we note in passing that
the symmetric mixtureA- andB-rich demixed phases canno
be distinguished in principle. Thus, as far as symmetric m
tures are concerned the term ‘‘a-rich’’ refers only to the fact
that an excess of one of the two components is present in
demixed liquid state regardless of which one it is.

o-
s
er

TABLE I. Notation to identify phasesP a of asymmetric binary
mixtures wetting a selective, chemically homogeneous, planar s
substrate.

a Nature of phase

G gas
bF B-rich film
mF mixed film
aF A-rich film
mL mixed liquid
aL A-rich liquid
FIG. 2. Phase diagramsmx(T) for bulk mixtures.~a! Symmetric mixture (xB51) where the dotted line represents thel line starting at
a tricritical point~!!, and~d! represents a critical point.~b! Asymmetric mixture (xB50.99) with two critical points~d!. One-phase regions
are labeled according to Table I.
6-7
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At the temperatureTt.1.082, mx(T) bifurcates into two
coexistence lines, namelymx

aLmL(T) ending at a tricritical
point m tri.22.040 andTtri.1.166. At the tricritical point
the line of discontinuous phase transitions between mi
and demixedA-rich liquid phases changes to al line, that is,
a line of continuous phase transitions between the tw
phases. The coexistence linemx

GmL(T), on the other hand
terminates at a critical point demarcated bymc.22.250 and
Tc.1.125. Hence, the bifurcation ofmx(T) at m t.22.250
andTt.1.082 constitutes a triple point at which a gaseo
mixed liquid and demixed,A-rich liquid phase coexist.

A slight asymmetry in the like interactions changes t
picture significantly in a number of respects. This can
seen in Fig. 2~b! where we consider the casexB50.99. First,
the triple point is shifted to somewhat higher valuesm t.
22.243 andTt.1.092. Second, and more importantly, t
coexistence linemx

aLmL(T) is shorter compared with the sym
metric bulk mixture@see Fig. 2~a!# and ends at a true critica
point mc.22.182, Tc.1.122 replacing the tricritical poin
visible in Fig. 2~a!. Hence, thel line starting atm tri.
22.040 andTtri.1.166 in Fig. 2~a! is absent in Fig. 2~b!.

TABLE II. Color key to identify coexistence linesmx
ab(T) along

which P a and P b are in thermodynamic equilibrium. The tab
applies only to the online version of this paper.
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B. Wetting behavior

Henceforth, we fix eAA521.0, eAB520.5, and xB

50.99, and investigate the impact ofxW on the wetting be-
havior of this weakly asymmetric binary mixture. This seem
sensible to limit the dimension of the parameter space
because varyingxB does not alter the generic phase behav
of our model qualitatively. To realize a wall the mixture ‘‘de
sires’’ to wet preferentially we seteAW521.075 so that mol-
ecules of componentA gain potential energy by interactin
with the solid substrate rather than with another molecule
either speciesA or B.

Before turning to a discussion of our results the rea
should, however, realize that a representation of phase
grams in terms of the mean density of the filmr̄ is inappro-
priate since this quantity depends on the choice ofz for wet-
ting films of finite thickness. Likewise a quantitativ
discussion of the ‘‘degree’’ of miscibility of a particula
phase in terms ofm̄[z21(k51

z mk is equally unsuitable be
cause it does not take into account the local density of

wetting film such that absolute values ofm̄ can be quite
misleading. Instead we introduce the excess coverage

G[(
k51

F

~rk2rbulk!5 (
k51

F

~rk2rF!, ~4.1!

where the far right side follows because for our pres
choice of parameters limk→Frk5rbulk whererbulk is the den-
sity of the bulk phase for a givenm andT. The excess cov-
erage is a particularly convenient order parameter becau
is frequently measured in parallel experimental studies@33#.
In a similar spirit we introduce a density-corrected miscib
ity parameter through the expression
FIG. 3. ~Color online! Phase
diagrams in theT-G representa-
tion. ~a! xW51.0000, ~b! xW

51.0160, ~c! xW51.0175, and
~d! xW51.0250. See Table II for
color key.
6-8
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FIG. 4. ~Color online!. Phase
diagrams in theT-D representa-
tion. ~a! xW51.000, ~b! xW

51.0145, ~c! xW51.0157, and
~d! xW51.0160. See Table II for
color key.
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mkrk ~4.2!

as a meaningful quantitative measure of the ‘‘degree’’ of m
cibility in binary-mixture films.

Since the excess coverageG is perhaps the more familia
of the two order parameters we begin by discussing its
pendence onxW ~see Fig. 3!. In Fig. 3~a! we plot T as a
function of G for an asymmetric binary mixture wetting
nonselective wall (xB51.000) which we take as a referenc
system. The plot shows that for sufficiently low temperatu
T&0.740 a gaseous mixture at low excess coverage 0&G
&0.340 coexists with anA-rich film at high excess coverag
0.846&G&1.0. As T increases further eventually a trip
point exists atTt.0.740 at which a gaseous film coexis
simultaneously with a mixed one at intermediate excess c
erages and with anA-rich one at high excess coverages. F
even higher temperatures the gaseous film coexists wi
mixed film whereas mixed films coexist separately with d
mixed films until the respective critical temperatures
Tc

GmF.0.763 andTc
mFaF.0.761 are reached.

The nature of the phases cannot be determined solel
the basis of the plot in Fig. 3~a!. However, the parallel plot in
Fig. 4~a! permits one to identify the specific wetting film
without ambiguity. It reveals that the gaseous film is char
terized byD'0 regardless ofT as one would expect. In othe
words, the gaseous film is nearly perfectly mixed unlike
coexistingA-rich film for which 0.558&D&1.0 depending
on T. That is, the asymmetry of the~bulk! mixture favoring
the formation ofA-rich mixtures prevails even in the imme
diate vicinity of the solid substrate. Figure 4~a! also shows
that the mixed films coexisting with either gas orA-rich de-
mixed films is characterized byD*0, so that it too has a
03160
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tendency towards formation ofA-rich films despite their
larger degree of miscibility~i.e., the smaller value ofD!
compared with the latter.

If the substrate is selective this picture becomes consi
ably richer. This is apparent from the plot in Fig. 3~b! where
we plot T as a function ofG for xW51.0160. For this value
of xW molecules of speciesB are preferentially adsorbed b
the substrate such that the fluid–substrate interaction co
terbalances to some extent the asymmetry of the mixture
a consequence the plot in Fig. 3~b! is morphologically dis-
tinct from the one displayed in Fig. 3~a! in that now a ther-
modynamically stable, demixedB-rich film coexists with
both a mixedB-rich film and a demixedA-rich film. As xW

increases further the one-phase region of the~demixed!
B-rich film widens and tends to gradually replace the~de-
mixed! A-rich film as a comparison between Figs. 3~b! and
3~c! indicates. This causes the critical point of theA- and
B-rich demixed films to be locatedabovethe coexistence line
mx

GaL(T) in the bulk so that theA-rich wetting film becomes
metastable over a regime indicated by the gray line in F
3~c!. Eventually, atxW51.025, theB-rich demixed phase
completely replaces the demixedA-rich one favored by the
asymmetry of the binary mixturexB50.99 in the bulk. Thus,
for a sufficiently large selectivity the substrate is capable
inducing a decomposition of the adsorbed film that is n
favored by the asymmetry of the mixture, that is aB-rich
phase is not visible in the bulk phase diagram shown in F
2~b!, as one would expect intuitively for our present choi
of values forxB , eAA , andeAB .

The mechanism through which theB-rich demixed film
appears asxW increases is revealed in greater detail throu
plots of T versusD in Figs. 4 which show that the critica
point at which mixed and demixedA-rich films become in-
distinguishable increases in temperature but shifts to loweD
6-9
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FIG. 5. ~Color online! Phase
diagrams in them-T representa-
tion and forxW as in Fig. 3. Inset
in ~b! is an enhancement to em
phasizemx

mFbF(T) ~see the text!.
The solid black line represents th
coexistence curvemx

GaL(T) in the
bulk. See Table II for color key.
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@see Figs. 4~a!, 4~b!, and 4~c!#. This indicates that with in-
creasingxW the mixed film contains a larger mole fraction
componentB. For sufficiently largexW componentB begins
to dominate the composition of the mixed film over a cert
range of temperatures@see Fig. 4~c!#. With increasingT this
effect becomes more pronounced at first over a range 0
&T&Tinv where the ‘‘inversion’’ temperature is defined as

dD

dT U
T5Tinv

50. ~4.3!

For T.Tinv the composition of the mixed film changes t
wards a larger mole fraction of speciesA all the way up to
the critical temperatureTc.0.796 as the plot in Fig. 4~c!
clearly shows.

Eventually, for sufficiently largexW51.0160 the plot in
Fig. 4~d! reveals that aB-rich, demixed film has entered th
picture. Hence, the coexistence between a mixed and
mixed,A-rich film is replaced by coexistence betweenA- and
B-rich demixed films for temperatures somewhat below
critical point demarcated byTc50.804 andD50.058. Just
prior to reaching this critical point, however, the compositi
of the demixed film changes to the extent that it again
comes~weakly! A rich. In addition, two other critical points
between a mixed and a demixed,B-rich film (Tc50.764 and
D520.230! and between a mixedB-rich and a gaseous film
are present (Tc50.762 andD520.013!.

The dependence of mixture properties on the attrac
strength of the solid substrate is illustrated in greater de
by the phase diagramsmx(T) plotted in Fig. 5. Taking Fig.
5~a! as a reference we note by comparing it with the plot
Fig. 5~b! that two new coexistence lines namely,mx

aFbF(T)
and mx

bFmF(T) arise. As one can see from the inset in F
5~b! these two coexistence lines have different slopes s
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that a triple point between a mixed film and demixedA- and
B-rich films occurs (Tt.0.739 andm t.22.600). Further
increase ofxW causes this new triple point to shift in th
direction of the already existing one at which a gaseo
mixed and demixedA-rich film coexist @see Figs. 5~a! and
5~b!#. Eventually, the two triple points coincide thereby gi
ing rise to a quadruple point at which all four phases~i.e.,
gaseous, mixed, and demixed,A- and B-rich films! are in
coexistence. IncreasingxW even further beyond this poin
causes the one-phase region of the demixed,B-rich film to
widen as the plot in Fig. 5~c! illustrates. Since the one-phas
region of theA-rich demixed film is then completely sur
rounded by other coexistence lines and the ordinateT50
thermodynamically stable demixedA-rich films are formed
exclusively through discontinuous phase transitions. Wid
ing of the one-phase region of demixed,B-rich films contin-
ues until the one-phase region of the demixed,A-rich films
has been entirely removed from the phase diagram@see Fig.
5~d!#.

V. SUMMARY AND CONCLUSIONS

In this work we focus on the wetting characteristics of
asymmetric binary mixture near a selective, planar, a
chemically homogeneous substrate. Model parameters
tuned such that in the bulk the mixture tends to phase se
rate where the asymmetry~i.e., difference in attraction
strength betweenA-A andB-B interactions! is chosen such
that in the demixed liquid state the formation ofA-rich
phases is favored. We employ a lattice model and assum
mean–field representation of the intrinsic free energy~func-
tional!. Even though this may seem an oversimplification
‘‘real’’ fluid mixtures at first glance, it is noteworthy tha
results obtained for such a model can be brought into se
quantitative agreement with recent experimental data p
6-10
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vided model parameters are chosen sensibly@33#.
In the present work it turns out that even very slight d

viations of xB from the symmetric casexB51 suffice to
completely suppress the formation of demixedB-rich liquid
phases in the bulk. This overall picture does not cha
qualitatively for allxB,1. Hence, the special case of a sym
metric mixture (xB51) considered previously by us@29#
and others@23–26# appears to have a somewhat ‘‘singula
character.

Taking the present asymmetric mixture as a referenc
seems most interesting to choose the selectivity of the s
substrate such that the fluid-substrate interactions com
with the fluid-fluid ones in the sense that the substrate e
getically prefers molecules of speciesB whereas in the bulk
formation ofA-A pairs is energetically favored.

Our main results can then be summarized as follows.
xW51.0 ~i.e., for a nonselective solid substrate! a demixed
A-rich film coexists with a mixed one in which the mo
fraction of speciesA exceeds that of speciesB. That is, even
though the film appears to be more or less mixed indica
by a lower value ofD, it still preserves a tendency toward
forming A-rich phases. This simply reflects the physical n
ture of our reference~bulk! mixture. As xW increases, the
composition of the mixed film changes until eventually t
concentration of molecules of speciesB dominates.

However, the composition of the mixedB-rich films ex-
hibits a nonmonotonic temperature dependence. This is il
trated by the plot in Fig. 6 which shows that beyond a cert
thresholdxW*1.0145 an inversion temperature exist for t
composition of the mixedB-rich film @see Eq.~4.3!#. For T
<Tinv the concentration ofB molecules in the mixed film
coexisting with a demixedA-rich film increases steadily
This temperature dependence is inverted forT>Tinv . Now,
the concentration of molecules of speciesB decreases withT
until eventually the concentration of molecules of specieA
in the mixed film exceeds that of molecules of speciesB. The
inversion temperature decreases slightly with increasingxW ,
as plots in Fig. 6 show.

Beyond a certain thresholdxW*1.01574 a stable de
mixed, B-rich film appears, coexisting separately with
mixed B-rich one and a demixedA-rich one. By varyingxW
appropriately all four phases~i.e., gaseous, mixedB rich, and
demixedA- and B-rich films! may coexist at a quadrupl
point. Thus, by fine tuning the fluid-substrate attraction o
may change the physical nature of adsorbed wetting film
rather spectacular ways. For intermediate selectivities

FIG. 6. Plots ofT vs D for coexistence between demixedA-rich
and mixed films of various compositions for several values ofxW

indicated in the figure.~d! demarcates the critical points.
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may support a tendency towards mixing a binary fluid su
that initially A-rich films eventually becomeB rich. The con-
centration of componentB in these films is maximum at the
inversion temperatureTinv . For sufficiently high selectivities
the substrate may induce demixing of theseB-rich wetting
films to the extent that demixedA-rich films are completely
absent.

These phenomena should in principle be observable
parallel experiments where the solid surface is modifi
chemically in a controlled and quantitative manner. As e
pected this chemical modification alters the fluid-substr
attraction@33#. However, experimentally it is generally quit
difficult to modify a solid surface such that the interactio
with a given fluid~mixture! can be varied nearly on a con
tinuous scale. Nevertheless, we anticipate our results to
useful in the interpretation of experimental investigations
wetting of chemically modified substrates by fluid mixtur
@34–36#. In these latter works x-ray reflectivity and diffus
scattering under grazing angles are employed to investi
the wetting behavior of binary organic mixtures wettin
silica and fused-silica surfaces. In Ref.@35#, for example, the
authors focus on liquid-gas interfaces and find a signific
change in composition of the wetting film as the bulk coe
istence line is approached. Similar effects are observed h
For instance, approaching in Fig. 5~c! the bulk coexistence
line from below along the isothermT50.75 one realizes tha
an originally mixed film undergoes a transition to a demix
B-rich film which is eventually transformed discontinuous
into a demixedA-rich film sufficiently close to the bulk co-
existence line.

Another important question the present work does not
dress is related to phase behavior of asymmetric mixture
they are confined to spaces of nanoscopic dimension~s!.
Again the interplay between asymmetry of the fluid–flu
interactions and selectivity of the solid substrate is expec
to induce a complex phase behavior where the degree
confinement~e.g., the size of nanoscopic pores! will become
an additional parameter that determines the phase beha
to a large extent. The behavior of fluid mixtures in confin
spaces is important in a variety of contexts ranging from, s
purification of gas mixtures@37# to catalysis@38#. A study
focussing on asymmetric binary mixtures under nanosco
confinement by selective walls is presently under way@39#.
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APPENDIX A: DERIVATION OF THE MEAN-FIELD
HAMILTONIAN

As was shown in Ref.@29# one can work out expression
for the numberNAA (NBB) of A-A(B-B) pairs, that is di-
rectly connected sites both of which are occupied by a m
ecule of speciesA(B). Likewise, expressions forNAB(s) and
the total number of molecules of speciesA andB at the solid
substrate,NAW(s) andNBW(s) have been worked out in Ref
6-11
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@29#. The resulting expressions presented in Eqs.~2.4!–~2.7!
of Ref. @29# contain terms that can be cast as

(
k,l

sk,lsk,l 615(
k,l

sk,lr l 61ml 615n(
l

r lr l 61mlml 61 ,

~A1a!

(
k,l

sk,lsk,l 61
2 5(

k,l
sk,lr l 615n(

l
r lr l 61ml , ~A1b!

(
k,l

sk,l
2 sk,l 61

2 5(
k,l

sk,l
2 r l 615n(

l
r lr l 61 , ~A1c!

(
k,l

sk,l
2 sk,l 615(

k,l
sk,l

2 r l 61ml 615n(
l

r lr l 61ml 61

~A1d!

at the mean-field level. In addition,

(
k,l

sk,l (
m51

NN(k)

sm,l54(
k,l

sk,lr lml54n(
l

r l
2ml

2 ,

~A2a!

(
k,l

sk,l (
m51

NN(k)

sm,l
2 54(

k,l
sk,lr l54n(

l
r l

2ml , ~A2b!

(
k,l

sk,l
2 (

m51

NN(k)

sm,l
2 54(

k,l
sk,lr l54n(

l
r l

2 , ~A2c!

(
k,l

sk,l
2 (

m51

NN(k)

sm,l54(
k,l

sk,l
2 r lml54n(

l
r l

2ml ~A2d!

arise where the summation over the four nearest neigh
~k! of lattice sitek can be carried out explicitly if Eqs.~2.6!
and ~2.7! are invoked. Finally,

(
k

sk,l5nr lml , ~A3a!
03160
rs

(
k

sk,l
2 5nr l ~A3b!

may be employed in Eqs.~2.4! and ~2.5! of Ref. @29# to
replace the sum over sites in lattice planesl 51,z.

Hence, Eqs.~A1! as well as~A3! permit us to write down
the mean-field expressions

NAA~r,m!5
n

8 (
l 51

z

@r lr l 11~ml11!~ml 1111!

1r lr l 21~ml11!~ml 2111!14r l
2~ml11!2#,

~A4a!

NBB~r,m!5
n

8 (
l 51

z

@r lr l 11~ml21!~ml 1121!

1r lr l 21~ml21!~ml 2121!14r l
2~ml21!2#,

~A4b!

NAB~r,m!5
n

4
@r lr l 11~12mlml 11!1r lr l 21~12mlml 21!

14r l
2~12mlml !#, ~A4c!

NAW~r,m!5
n

2
@r1~11m1!1rz~11mz!#, ~A4d!

NBW~r,m!5
n

2
@r1~12m1!1rz~12mz!#, ~A4e!

which follow after somewhat tedious but straightforward
gebraic manipulations.

Replacing now in Eq.~2.2!, Ni j (s) and NiW(s)( i , j
5A,B) by their mean-field counterparts given in Eqs.~A4!
eventually yields
r of
Hmf~r,m!5
en

8 (
l 51

z

@r lr l 11~ml11!~ml 1111!1r lr l 21~ml11!~ml 2111!14r lr l~ml11!2#

1
exbn

8 (
l 51

z

@r lr l 11~ml21!~ml 1121!1r lr l 21~ml21!~ml 2121!14r lr l~ml21!2#1
eABn

4

3(
l 51

z Fr lr l 11~12mlml 11!1r lr l 21~12mlml 21!14r lr l~12mlml !1
eAWn

2
@r1~11m1!1rz~11mz!#

1
eAWxwn

2
@r1~12m1!1rz~12mz!#2n(

l 51

z

r lm ~A5!

as the mean-field analog ofH given in Eq.~2.2!. In Eq. ~A5! the first two sums account for the interaction between a pai
6-12



ify

WETTING OF A SELECTIVE SOLID SURFACE BY AN . . . PHYSICAL REVIEW E69, 031606 ~2004!
molecules of speciesA and B, respectively. Likewise, the third sum represents the contribution ofA-B attractions to the
mean-field Hamiltonian. The next two terms represent the interaction between a molecule of speciesA andB with the solid
substrate and the last term couples the system to an~infinitely large! external reservoir of matter. Moreover, it is easy to ver
from Eq.~A5! that in the limit of a symmetric binary mixture (xb51) and a nonselective solid substrate (xw51) we recover
the expression given in Eq.~2.10! of Ref. @29#.

APPENDIX B: DERIVATION OF EQS. „2.12…

To derive Eqs.~2.12! we depart from Eq.~2.10! which may be written more explicitly as

Q~n,m!5)
l 51

z
nn

~n2nl !
n2nlS nl

11ml

2 D nl (11ml )/2S nl

12ml

2 D nl (12ml )/2
, ~B1!

in the limit n,$nl%→` using Stirling’s approximation@29#. Using @see Eqs.~2.6! and ~2.7!#

r l
A5r l S 11ml

2 D , ~B2a!

r l
B5r l S 12ml

2 D , ~B2b!

so that Eq.~B1! may be recast as

ln Q~r,m!52n(
l 51

z H r l ln r l1~12r l !ln~12r l !2r l ln 21
r l

2
@~11ml !ln~11ml !1~12ml !ln~12ml !#J . ~B3!

Hence, together with Eqs.~2.11! and ~A5!, Eq. ~B3! yields
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kBT

z (
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z

@r l ln r l1~12r l !ln~12r l !2r l ln 2#1
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2z (
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z

r l@~11ml !ln~11ml !1~12ml !ln~12ml !#

1
e

8z (
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z
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1
exb

8z (
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z
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1
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4z (
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z
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eAWxw

2z
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1

z (
l 51

z

r lm. ~B4!

Differentiating Eq.~B4! according to Eqs.~2.12! we find

h1
k52m̄1b21F ln

rk

12rk
1

1
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e
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h2
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2 Fb21ln
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wherem̄[m2b21ln 2 andd i j is the Kronecker symbol.
,

n
–

E

,

V.

y

m.

ns.

tt.

tter

isl,

of
@1# P.G. de Gennes, Rev. Mod. Phys.57, 827 ~1985!.
@2# D. E. Sullivan and M. M. Telo da Gama, inFluid Interfacial

Phenomena, edited by C. A. Croxton~Wiley, New York, 1986!.
@3# S. Dietrich, inPhase Transitions and Critical Phenomena, ed-

ited by C. Domb and J. L. Lebowitz~Academic Press, London
1988!, Vol. 12.

@4# M. Schick, in Liquids at Interfaces, Les Houches Sessio
XLVIII, edited by J. Charvolin, J. F. Joanny, and J. Zinn
Justin~North-Holland, Amsterdam, 1990!, p. 415.

@5# D. Bonn and D. Ross, Rep. Prog. Phys.64, 1085~2001!.
@6# R. Evans and M. Chan, Phys. World9, 48 ~1996!.
@7# H. Cao, Z.N. Yu, J. Wang, J.O. Tegenfeldt, R.H. Austin,

Chen, W. Wu, and S.Y. Chou, Appl. Phys. Lett.81, 174~2002!.
@8# A.V. Melechko, T.E. McKnight, M.A. Guillorn, V.I. Merkulov,

B. Illic, M.J. Doktycz, D.H. Lowndes, and M.L. Simpson
Appl. Phys. Lett.82, 976 ~2003!.

@9# T.C. Kuo, D.M. Cannon, J.J. Tulock, M.A. Shannon, J.
Sweedler, and P.W. Bohn, Anal. Chem.75, 1861~2003!.

@10# J. S. Rowlinson and B. Widom,Molecular Theory of Capillar-
ity ~Oxford University Press, Oxford, 1982!.

@11# J.G. Dash, Phys. Rev. B15, 3136~1976!.
@12# J.W. Cahn, J. Chem. Phys.66, 3667~1977!.
@13# C. Ebner and W.F. Saam, Phys. Rev. Lett.38, 1486~1977!.
@14# W.F. Saam and C. Ebner, Phys. Rev. A17, 1768~1978!.
@15# R. Pandit, M. Schick, and M. Wortis, Phys. Rev. B26, 5112

~1982!.
@16# D. Nicolaides and R. Evans, Phys. Rev. Lett.63, 778 ~1989!.
@17# S. Dietrich and M. Schick, Phys. Rev. B33, 4952~1985!.
@18# K. Binder and D. Landau, Phys. Rev. B37, 1745~1988!.
@19# R. Lipowsky, Interface Sci.9, 105 ~2001!.
@20# S. Dietrich, in Proceedings of the NATO–ASI ‘‘ New Ap-

proaches to Old and New Problems in Liquid State Theor,’’
edited by C. Caccamo, J. P. Hansen, and G. Stell~Kluwer,
Dordrecht, 1999!, p. 197.
03160
.

@21# C. Rasco´n and A.O. Parry, Nature407, 986 ~2000!.
@22# S. Sacquin, M. Schoen, and A.H. Fuchs, J. Chem. Phys.118,

1453 ~2003!.
@23# F. Schmid and N.B. Wilding, Phys. Rev. E63, 031201~2001!.
@24# Y. Fan, J.E. Finn, and P.A. Monson, J. Chem. Phys.99, 8238

~1993!.
@25# E. Kierlik, M.L. Rosinberg, Y. Fan, and P.A. Monson, J. Che

Phys.101, 10947~1994!.
@26# N.B. Wilding, F. Schmid, and P. Nielaba, Phys. Rev. E58,

2201 ~1998!.
@27# N. Choudhury and S.K. Ghosh, Phys. Rev. E64, 021206

~2001!.
@28# R. Evans, in Liquids at Interfaces, Les Houches Session

XLVIII ~Ref. @4#!, p. 1.
@29# D. Woywod and M. Schoen, Phys. Rev. E67, 026122~2003!.
@30# D. Woywod and M. Schoen~unpublished!.
@31# D. A. Lavis and G. M. Bell,Statistical Mechanics of Lattice

Models Vol. I. Closed-Form and Exact Solutions~Springer-
Verlag, Berlin, 1989!, p. 60.

@32# H. Bock, D. J. Diestler, and M. Schoen, J. Phys.: Conde
Matter 13, 4697~2000!.

@33# G. Rother, D. Woywod, G. H. Findenegg, and M. Schoen~un-
published!.

@34# A. Plech, U. Klemradt, M. Huber, and J. Peisl, Europhys. Le
49, 583 ~1999!.

@35# A. Plech, U. Klemradt, and J. Peisl, J. Phys.: Condens. Ma
13, 5563~2001!.

@36# A. Plech, U. Klemrath, M. Aspelmeyer, M. Huber, and J. Pe
Phys. Rev. E65, 061604~2002!.

@37# R. Denoyel and E. Sabio Rey, Langmuir14, 7321~1998!.
@38# N. Y. Chen, T. Degan, Jr., and C. M. Smith,Molecular Trans-

port and Reaction in Zeolites: Design and Application
Shape Selective Catalysts~Wiley-VCH, New York, 1994!.

@39# D. Woywod and M. Schoen~unpublished!.
6-14


